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Abstract 

Integration of non-wood forest products (NWFPs) into forest management planning has become 

an increasingly important issue in forestry over the last decade. Mushrooms are among the 

valued NWFPs due to their medicinal, nutritional, commercial and recreational importance. 

Commercial mushroom harvesting and local tourism through mushroom collection also provides 

important income to local dwellers and contribute to the economic value of regional forest and 

could act as an incentive for sustainable forest management. The sustainable utilization of the 

potential in mushrooms in a region requires generating information on their occurrence and 

predicts their yield. In this study we have used a two stage modeling approach coupled with 

mixed-effects modeling to separately model the probability of occurrence and conditional yield 

of edible, marketed and Lactarius group deliciosus mushrooms in Pinus pinaster forests in Soria, 

Central Spain. We used climatic, soil and stand characteristics. The best logistic regression 

models for predicting probability of occurrence of edible, marketed and Lactarius group 

deliciosus mushrooms are mainly based on autumn precipitation having a positive effect. For 

Lactarius group deliciosus, pH has also been a significant predictor, and inversely related with 

occurrence of mushroom. In the best conditional yield models stand (age of oldest tree) and soil 

(soil textural class) characteristics became important predictors as we move from the general 

edible group to marketed and genus level, Lactarius group deliciosus. An increase in stand age 

and sandy soil textural class showed a negative effect. Not only the amount of rainfall but also its 

distribution affects mushroom yield. The modeling approach we used is advantageous since it 

enable us to examine the effect of the predictors on the occurrence and the yield of mushrooms 

separately which could help to better understand the system. In addition, the results of the two 

models can be combined to get the predicted mushroom yield under specific conditions.  

Key words: Edible, Lactarius group deliciosus, marketed, mushroom, mixed-effects, non-wood forest 

products (NWFPs), two-stage modeling. 
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1. Introduction 

Forests, in addition to the direct wood products, provide diverse ecological services and 

resources for society. They are habitat for animals, play significant role in water cycling and soil 

development, provide resins, oils, mushrooms etc, plus they are used as a hunting and 

recreational place. Mediterranean forests are recognized for the diversity of both wood and non-

wood forest products (NWFPs). The most valuable NWFPs from these forests include pine nuts, 

cork, edible fungi and resins (Bravo et al., 2011). 

Wild edible fungi have obtained significant attention as one of NWFPs due to the observed 

potentials. At a global scale, it has been indicated as there are 2166 species of wild edible 

mushrooms of which more than 470 have medicinal properties. This shows the economic 

importance of the mushrooms and their relevance as food source (Boa, 2004). In Spain, 

according to Marraco and Rubio (1992) (as sited in Ortega and Martínez-Peña, 2008) the 

revenue from mushroom collection is approaching the return typically expected from timber 

which had been consider the most important resource from the forests in this country. 

Specifically, in a study conducted in Castilla y León, Martínez-Peña et al. (2007) has indicated 

the average annual production of wild edible mushrooms of social and economic interest was 

estimated to be 34,000 tones (excluding Tuber genus) produced in an area of 4.5 million 

hectares. Similar study showed as 54% of the population in Castilla y Leon picks mushrooms 

implying a potential of 567,715 local harvesters. This potential capacity indicates the possibility 

to generate up to 65 million Euros by marketing the main commercial species. Some fungi such 

as boletes (Boletus edulis) and saffron milk caps (Lactarius group deliciosus) are specially 

valued in many countries, and their trade has become an important complementary economic 

activity in many regions (Voces et al., 2011; Cai et al., 2011; Martínez de Aragón et al., 2011). 
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Bonet et al. (2014) also demonstrated the importance of mushroom productions in Catalonian 

pine forests with 24,500 tons/yr of mushroom of which 14,300 tons are edible and 7.900 tons are 

commonly marketed mushrooms. The corresponding economic value is estimated to be 48 and 

32 million Euros for edible and marketed mushrooms respectively (Bonet et al., 2014).  Some 

studies have also showed that the market demand for many ectomycorrhizal fungi has increased 

to the extent that commercial value of forest fungi may equal or even surpass the value of timber 

(Alexander et al., 2002; Arnolds et al., 1995; Palahi et al., 2009).   

A survey conducted in Catalonia demonstrated that the residents are willing to pay for the 

experience of picking mushrooms (Mogas et al., 2005). Hence, in addition to acting as a source 

of income and tourism business mushroom could soon provide incentive for the forest landowner 

for improved forest management. This could lead to shift in management priorities and 

interventions such as thinning, pruning, and control of invasive plants. These management 

priorities would become more apparent in a frequent basis when mushrooms provide revenues 

for forest managers. This would also have implications in making forests less vulnerable to wild 

fire and over grazing (Bonet et al., 2008). 

These potentials that could be harnessed from wild edible mushroom coupled with other factors 

like the decrease in the profitability of wood production is making forest and land manager to 

seriously evaluate the importance of many NWFPs like mushroom (Mogas et al., 2006). Pilz and 

Molina (2002) also indicated that the potential in mushrooms has triggered a growing interest 

from forest owners and managers to inventory, predict, and develop the commercial mushroom 

production. 

In order to have a sound forest planning for a joint production of wood and mushrooms requires 

prediction of both mushroom and wood production (Palahi et al., 2009). This requires detailed 
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information on the main variables affecting mushroom yield. Several factors affecting mushroom 

yield and dynamics have been indicated in the literature. These factors are classified into three 

main groups; which are stand structure (e.g. tree species, stand density, stand age), weather 

variability (e.g. precipitation, temperature) and local site characteristics (e.g. altitude, slope, 

aspect) (Martínez-Peña et al., 2012a). For example, for the species that establish mycorrhizal 

symbiosis with trees, it may be expected that stand structure which can be modified through 

forest management, as well as soil properties affect mushroom production.  It is also well known 

that weather, together with other environmental factors, also affect mushroom dynamics. In 

addition, the local site characteristics have been repeatedly mentioned in the literature to have an 

impact on mushroom yield (Egli, 2011). The presence of large amount of potential variables 

related to mushroom productivity and their interdependence makes it difficult to give clear 

recommendation for managing mushroom yields there by making yield prediction not an easy 

task. Systematic quantitative analyses on the effect of different variables are required (Martínez-

Peña et al., 2012a). 

Modeling techniques are a valuable tool that allows identifying factors most relevant for 

predicting mushroom yield. Forest management oriented models based on long historical data 

series of annual measurements in many locations can be used to model mushroom yields as a 

function of different types of predictors. In general there are very few models in the literature to 

predict production of NWFPs for use in forest planning (Bravo et al., 2011). These kinds of 

studies are rather recent, and only a few models for mushroom yield have been published so far. 

Bonet et al. (2008) developed a model for predicting the total edible and marketable mushroom 

yield and species richness as a function of site and forest stand variables based on a three year 

mushroom inventory in 24 Scots pine plots in north-eastern Spain. In this study they showed that 
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basal area was the most important growing stock characteristics for mushroom production with 

maximum mushroom yields at stand basal areas of approximately 20 m2/ha. Additional study 

based on 21 plots established in Pinus sylvestries, Pinus nigra and Pinus halepensis forests in the 

same region also found that maximum mushroom productivity corresponded to stands where the 

basal area ranged from 15-20 m2/ha. Site variables such as aspect, slope and elevation also had 

an important influence on annual mushroom yield (Bonet et al., 2010). Martínez-Peña et al. 

(2012a) also developed empirical models for ectomycorrhyzal mushroom with special emphasis 

on most valuable species in the area in Scot Pine forest in North-Central Spain. They have found 

out that weather variables like rainfall and temperature have significant effect on mushroom 

yield and from stand variables dominant height, basal area and stand age have a significant 

effect. 

As highlighted above, the presence of multiple factors responsible for high temporal variation in 

mushroom productions like variations in precipitation, temperature, frost, evapotranspiration, 

relative humidity, and water deficits (Martínez de Aragón et al., 2007; O’Dell et al., 1999; 

Straatsma et al., 2001) necessitates the collection of large quantities of data over several years 

for the construction of reliable models. The between region difference in site characteristics, 

weather and forest structure prevent straightforward application of the above mentioned results 

to other areas. 

Traditionally resin was the main product of the Pinus Pinaster (Maritime Pine) forest in our 

study area, Southern province of Soria, Castilla and León region, in Central Spain, but the 

decline of its market in the 1970s led to a shift towards wood production. Recently, mushroom 

harvesting has become a major activity (Fernandez-Toiran et al., 2006). In recent years, 

associated with the increase of resin price these forests have again started to be exploited for 

resin as well. The aim of the study was to develop conditional yield models for predicting the 
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production of mushrooms in Maritime Pine forests in Central Spain based on mushroom 

production data from seventeen consecutive years (1997-2013). The predictive variables tested 

include annual precipitation, monthly precipitation from August to November, mean annual 

temperature, mean monthly temperature from August to November, pH, percentage of organic 

matter, soil texture and age of oldest tree in the plots. A two stage modeling (Welsh et al., 1996; 

Fletcher et al., 2005) coupled with mixed-effects modeling technique was used to account for 

random annual variation of mushroom productions. The two-stage modeling approach allows us 

to separately model the occurrence of mushroom and yield given presence. Two-stage modeling 

has been recommended for data like mushroom production where we could get zero values in 

plots and also across year (Welsh et al., 1996; Fletcher et al., 2005). These models could support 

forest managers to optimize economic returns by predicting potential productions of mushrooms. 

They could also be used to support the local mushroom pickers as well as the truism linked to 

mushroom picking. In addition, coupling the output of these kinds of studies with evaluation of 

the local species for bioactive compounds could pave a way for attracting and integrating 

industrial innovation with the forest management planning. 
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2. Material and methods 

2.1. Study area 

The study area is located in the Southern province of Soria, Castilla and León region, in Central 

Spain in the so called “Pinares Llanos Centrales” area. Altitude ranges from 1000 to 1200 

m.a.s.l. and annual rainfall ranges between 500 and 700 mm, with a marked summer drought. 

Average annual temperature is 10 °C, with cool winters (average January temperature is 2 °C). 

Soils are arenosols and regosols developed over tertiary and quaternary sands. 

 

Figure 1. Map of the Study area 
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The original vegetation is mainly of Quercus pyrenaica Willd forests, which were converted into 

P. pinaster forests. Understorey is formed by different shrubs (Cistus laurifolus L., Juniperus 

communis L., Erica arborea L., Calluna vulgaris L.) and Q. pyrenaica resprouts. The rotation of 

P. pinaster is 80 years, with trees being cut into two phases. At the beginning of this research, 

most of the trees were removed at the end of the cutting cycle, whereas some were spared, as 

parent trees, for ten more years in order to provide seeds for natural recruitment. If natural 

regeneration was not successful, manual planting is conducted. Similar management schemes 

have been performed for the last century in the study area. Nowadays, the forests are 

silviculturally managed by clear cutting with soil harrowing and sowing. 

2.2. Sampling design 

The forest in the study area is a managed forest and the study plots were established as stated in 

Fernandez-Toiran et al. (2006) and Ágreda et al. (2013). We modified the age class based 

classification used by the previous authors to account for the long year data and possible change 

in age class. Based on age (the number of rings) of each tree in all plots determined in 2012, 

mean age and oldest tree in the plots were assigned for the whole study period, 1997 to 2013.  

Figure 2 shows the age distribution for each plot. 
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Figure 2. Age variability chart for each plot used in modeling 

 

A total of 15 sampling plots were used for this study. Each sampling plot covers an area of 150 

m2, with a rectangular shape (5×30m). Plots were fenced to prevent harvesting and trampling. 

Plots were also made to be at least 500 m from stands corresponding with another age class in 

the forest management plan and areas with another tree species present were avoided. 

Soil texture, soil organic matter and soil pH were determined for each plot at the beginning of the 

study. Weather data is obtained from a nearby meteorological station (23 km) from the study plot 

located at 414630 latitudes and 22859 longitudes (30T542963; 4624924). Since the study plots 

are located in a plateau we consider the weather data from this meteorological station very well 

represents the reality of the mushroom plots. 
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Sampling was performed from September to December (week 35–50) on a weekly basis from 

1997 to 2013 since this period corresponds with most of the sporocarps’ emergence; maximum 

production time being in October and November.  All the sporocarps were collected, and the 

species were determined using morphological features with appropriate keys and monographs as 

described in Fernandez-Toiran et al. (2006) and Ágreda et al. (2013).  Table 1 presents the 

species identified in this study. The study area is almost uniform and there was no much 

difference in slope and aspect of the plots (Majority with a slope of zero and with max slope 

value of 1.4 for some). 

Table 1.  List of edible and marketed species identified (species with * are marketed 

species) 

Edible and marketed mushrooms identified in the study 

Agaricus impudicus Rhizopogon roseolus Tricholoma ustale 

Agaricus sylvaticus Rhodocollybia butyracea Hygrophorus agathosmus* 

Amanita citrine Russula albonigra Lactarius deliciosus* 

Astraeus hygrometricus Russula caerulea Lactarius sanguifluus* 

Baeospora myosura Russula cessans Lactarius semisanguifluus* 

Chroogomphus rutilus Russula chloroides Macrolepiota procera* 

Cortinarius delibutus Russula heterophylla Pleurotus eryngii* 

Hygrophoropsis aurantiaca Russula risigallina Suillus luteus* 

Hygrophorus gliocyclus Russula roseipes  Richoloma portentosum* 

Laccaria laccata Russula turci  Tricholoma terreum* 

Lactarius chrysorrheus Russula vesca  

Lycoperdon perlatum Russula violeipes  

Lyophyllum fumosum Russula xerampelina  

Macrolepiota konradii Suillus bellinii  

Mycena galericulata Suillus granulatus  

Mycena pura Tricholoma fracticum  

 

A total of 42 edible mushroom species have been identified, of which non-marketed and 

marketed are represented by 33 and 9 species respectively. Lactarius group deliciosus is 

represented by three species out of the nine marketed species; these are Lactarius deliciosus, L 

.sanguifluus, and L. semisanguifluus (Table 1). The maximum edible, marketed and Lactarius 
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group deliciosus mushroom production in our data set are 360.47 kg ha-1 yr-1, 308.64 kg ha-1 yr-1 

and 303.95 kg ha-1 yr-1 respectively; all were observed in 2012. Majority of the marketed 

mushroom is represented by Lactarius group deliciosus (76.12 %) (Table 2).  

Table 2. Average mushroom production data and number of plots (N) used in conditional 

yield modeling 

Production      Mean         SD Minimum Maximum    N   Percent 
Edible(kg ha

-1 
yr

-1
) 32.26389    43.0342 0.03 360.47   220  

Marketed(kg ha
-1 

yr
-1

) 20.64148    33.2842  0.13 308.64   155 45.15 % of 
Edible 

Lactarius group 

deliciosus (kg ha
-1 

yr
-1

) 

20.64008     35.11 0.59 303.95   118 76.12 % of 
Marketed 

 

 

2.3. Modeling 

There were three soil textural classes; hence, we created two dummy variables representing 

loamy sand and sandy loam texture respectively. Thus, sandy soil texture was used as the 

‘reference’ or ‘default’ category. 

Due to the zero-inflation of our data and after preliminary analysis I have decided to use a two-

stage modeling approach (Welsh et al., 1996; Fletcher et al., 2005) in order to model the 

occurrence (presence or absence) and the positive abundance of mushrooms separately. For this, 

I have divided the data set into two. The production data for the edible, marketed and Lactarius 

group deliciosus (which include the species L. deliciosus, L. sanguifluus and L. semisanguifluus) 

were converted into binary data; 1 wherever there is production otherwise 0. I filtered out all the 

data with production value of 1 as a second data set. The binary data was used to fit logistic 

regression model for the probability of mushroom occurrence (Eq. 1). The second data set aimed 

at modeling the mushroom yield (fresh weight) conditional on the probability of mushroom 
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occurrence (Eq. 2). The final yield equation would be a multiplication of the two models (Eq. 3). 

The equations are given below: 

 

���� =   �
��	
��������                                                       Eq. 1 

�����	���� = �� + �� + �� + �                                       Eq. 2 

��	�� = ���� × ������� × 	�����	����
                     Eq. 3 

where )(yp  is probability of occurrence of edible, marketed or Lactarius group deliciosus 

mushrooms, cyield is edible, marketed or Lactarius group deliciosus mushroom yield 

conditional on mushroom occurrence, yield  is edible, marketed or Lactarius group deliciosus 

mushroom yield (kg ha-1 yr-1), α and β  denote fixed-effects model parameters, 0a  and 0b denote 

year random effects, x  is a vector of independent variables, Snowdon is Snowdon’s correction 

factor for the back-transformation bias (Snowdon, 1991), and ε  is residual following a normal 

distribution with mean equal to zero and variance equal to 2σ . 

The predictors used are presented in Table 3 below and can be categorized into climatic, soil and 

stand variables. In addition different combinations of the predictors were also used. For example 

Sum of different combination of the monthly precipitation and temperature. Transformations 

(logarithmic and square root) of the predictors were also evaluated for significance. We made 
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sure about the correctness of the values recorded for mushroom production, hence, we 

considered all the values as real data and none were considered as being outlier.  

Table 3. Predictors used in modeling. 

Category Predictors 

Climate P_ag, P_set, P,oct, P_nov, P_annual, (and different combinations) 
 
Tm_ag, Tm_set, Tm_oct, Tm_nov, Tm_annual mean(and different combinations) 
 

Soil pH, OM, Texture class  
 

Stand Plot Mean Age, Oldest tree in the plot 
 

Where: ag, set, oct and nov stands for the months of August, September, October and November; 
OM for Organic matter (%),  
 

The modeling data were characterized by multiple measurements for each individual sampling 

unit (i.e. repeated observations for the same plot in successive years). In this type of repeated 

measurements, the observations are likely to be auto-correlated and therefore cannot be regarded 

as a random sample, thus violating the fundamental assumption of ordinary least squares 

regression of independent observations. To account for this data structure, linear mixed-effects 

modeling approach with both fixed and random components was used (Fox et al., 2001). Since 

correlation of annual observations for the same plot was very low we decided not to include plot 

factor in the variance component model. However, the observations for the same year were more 

cross correlated due to the annually varying conditions. This was accounted for by including the 

random year factor in the variance component model and by allowing the intercept to vary 

randomly for each year, this results in a model with random intercept. This structure was used for 

both the logistic probability of occurrence and conditional yield models. Figure 3 shows the 

yearly variability of mushroom production. 
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Figure 3. Inter-annual variability in mushroom production (Lactarius spp. indicates L. 

group deliciosus production) 

 

2.3.1. Mixed-effects logistic regression models  

The models for the probability of mushroom occurrence are of the logistic form (Eq. 4) in which 

the logit of probability of occurrence at plot i (pi) is a linear function of the predictors included 

(xk), their beta-coefficients (βk), year random effect ( 0b ) and unexplained error (ε) is assumed to 

follow a binomial distribution (Hosmer and Lemeshow, 2000). 

�� ��� ��
�!��" = �� + ����� + �#�#� + ⋯ + �%�%� + �� + ��                           Eq. 4 

The predictors (precipitation, temperature, soil and stand variables) were added to the model in a 

systematic manner to check how much they would improve the previous model. In each category 

of the predictors the significant predictors and the best model is selected followed by checking 

how it can be improved by incorporation of variables in the next category of predictors. Different 

ways of entering the predictor was checked and the results were consistent.  
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2.3.2. Linear mixed-effects models 

All the parameters used for fitting the logistic regression models were used. The models were 

fitted using linear mixed-effects regression modeling approach. We followed similar pattern for 

putting the predictors in our model as we did for the logistic regression models. 

The basic equation (Eq. 2) for the linear mixed-effect model is specified as the production of 

mushroom in kg ha-1 yr-1 in logarithmic scale, conditional on the probability of mushroom 

occurrence, which is a linear function of the predictors (fixed effects) (x), a random year       

factor ( 0a ) and unexplained error (ε).  

Since the predicted conditional production is in logarithmic scale it needs to be back 

transformed. A Snowdon (1991) correction factor was calculated for each model to correct for 

the back-transformation bias due to the logarithmic transformation of the predicted values.  

2.3.3. Model parameterization and evaluation 

The lme4 package of R software (R i386 3.0.3) has been used for fitting and analyzing mixed-

effect models. The models were parameterized (the values of beta-coefficients in the equations 

were estimated) using the ‘glmer’ and ‘lmer’ functions for the generalized mixed effect models 

and linear mixed effect models respectively (Bates et al., 2014). The ‘glmer’ uses maximum 

likelihood (Laplace Approximation), and ‘lmer’ uses the Restricted Maximum likelihood 

(REML).  

Bayesian Information Criterion (BIC) was used to check trade-off between model parsimony and 

predictive performance of both nested and non-nested models. BIC assesses the overall fit of a 

model based on Bayesian comparison of models. Under the assumption that we do not have any 
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prior preference for one model over the other, BIC identifies the model that is more likely to 

have generated the observed data. The model with smaller BIC is preferred. How much one 

model is preferred over the other depends on the magnitude of the difference. Presence of multi-

coliniarity was also checked by observing their correlation matrix. 

The following criteria were considered in model evaluation: a) agreement with current biological 

knowledge, b) simplicity and robustness, c) statistical significance (p<0.05), d) non-biasness, and 

e) homocedasticity and normal distribution of residuals.  

The conformity with statistical assumptions was evaluated and no extreme violations were 

observed (see appendix 1 for results of checking the assumptions). 
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3. Results 

3.1. Probability of occurrence models 

The models selected for predicting the probability of occurrence of edible, marketed and 

Lactarius group deliciosus mushrooms are respectively presented in Eq. 5, 6, and 7. 

& = '()*+,-*�. =  −�. 123� + �. 343� ∗ '67879�/��                                                       Eq. 5 

& = '()*;6(<.8., =  −3. �1�3  + �. =4>= ∗ '67879�/��                                               Eq. 6 

& = '()*?6@86(-7A =  �. 2>4=4 + �. #3=� ∗ '67879�/�� −  �. 223> ∗ BC                       Eq. 7 

The estimated probability of success, i.e. the probability of mushroom presence at a given plot 

and year is given by  ' =  �/�� +  .DB�−&�� 

The logistic regression analysis showed that autumn precipitation (in millimeters), which is the 

sum of the total rainfall in the months of August, September and October to be significant 

predictor in all the three models i.e. the probability of occurrence for edible, marketed and 

Lactarius group deliciosus mushrooms. In edible and marketed logistic models no other variable 

has been observed to be significant other than autumn precipitation. However, pH has been 

observed to be significant predictor for probability of occurrence of Lactarius group deliciosus. 

The models indicate higher autumn precipitation increase the probability of occurrence of the 

three categories of mushrooms in the modeling. One unit increase in the scaled autumn 

precipitation is associated with 0.4741 kg ha-1 yr-1, 0.3753 kg ha-1 yr-1, and 0.2431 kg ha-1 yr-1 

increase in the log odds of presence of edible, marketed and Lactarius group deliciosus 

respectively. 

Taking the exponent of the log odds (indicated in units odd ratio), gives the Odds Ratio (OR) 

(Table 4), which shows that a one unit increase in the scaled autumn precipitation increases the 
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odds of presence of edible, marketed and Lactarius group deliciosus mushrooms in the plots by a 

multiplicative factor of 1.606, 1.455 and 1.275 respectively or 60.6%, 45.5% and 27.5% 

respectively. One unit increase in pH decreases the Lactarius group deliciosus mushroom 

production by a multiplicative factor of 0.412 or by 58.8%. The increment in percentage of 

mushroom production would be much higher for more than one unit increase of autumn 

precipitation (in addition, the values fitted in the model are scaled by division of 10). 

 Table 4. Coefficients (Estimates), standard error (SE), Wald Z value, p-value, odds ratio 

(OR) and 95% confidence interval for fixed effect part of the three mixed-effects logistic 

models. 

Model Predictor        Estimate   Std.Error      Z     Pr(>|Z|)    OR     Conf.int(OR) 

Edible  Intercept       -1.9841      2.5920 -0.766        0.4440   

 (P_autumn)/10        0.4741      0.2373 1.998        0.05* 1.606 1.0996  - 3.2793 

               

 

 

AIC= 129.8              logLik =-61.9          

BIC=140.4             deviance=123.8   

                                 df.resid=252 

    

 

Marketed 

 

 Intercept 

 

  -4.0914 

 

      1.5134 

 

  -2.703 

 

0.00686** 

 

 

 

 

 (P_autumn)/10    0.3753        0.1189     3.156  0.00160 ** 1.455   1.1888 -1.9884 

        

 

 

 

 

AIC= 252.7              logLik =123.3         

BIC= 263.3         deviance=246.7          

                                 df.resid=252 

     

Lactarius 

group 

deliciosus 

 

Intercept 

 

    1.85737 

 

    2.2098 

 

   0.840  

 

  0.40061 

 

6.4068 

 

 (P_autumn)/10     0.2431      0.0805    3.019   0.0025**    1.275     1.089 - 1.4932 

 pH    -0.8845      0.3312   -2.671  0.00757**   0.412     0.2158 -0.7903 

  

AIC= 279.8            logLik =-135.9         

BIC= 293.9        deviance=271.8 

                                 df.resid= 251 
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The variance components accounted by the random year factor in the logistic regression models 

are 6.731, 2.546, and 2.049 for edible, marketed and Lactarius group deliciosus mushrooms 

respectively (Table 5).  

Table 5. Variance and standard deviation of the best mixed-effects logistic models for 

edible, marketed and Lactarius group deliciosus mushrooms occurrence 

Year/ Random effect       Edible Marketed Lactarius 

Variance 6.731 2.546 2.049 
Std.Dev. 2.594 1.596 1.432 
 

Occurrence of mushroom seems to happen starting 100 mm of autumn rainfall in the study area. 

There is an overlap of the presence and absence of mushroom around the 100 mm of rainfall 

mark, this may be explained by other stand and soil variables (Figure 4, 5, 6). 

 

Figure 4.  Distribution of autumn precipitation over the probability of occurrence of edible 

mushrooms 
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Figure 5.  Distribution of autumn precipitation over the probability of occurrence of 

marketed mushrooms 

 

Figure 6.  Distribution of autumn precipitation and pH over the probability of occurrence 

of Lactarius group deliciosus 
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3.2.  Conditional yield models 

43.23% of the total variance of the random effect in the Conditional edible mushroom model is 

attributed to the year random effect; 20.71% and 13.1% in the Marketed and Lactarius group 

deliciosu conditional yield models respectively (Table 6). 

Table 6. Measures of variability in mushroom production due to year random effect for the 

conditional yield models 

Model Random 

Effect 

        Variance          Std.Dev    

Edible  Year 1.302 (43.23%)          1.141     
  Residual 1.710          1.308     
 
Marketed 

  
Year 

 
 0.3922 (20.71%)           

  
   0.6262 

   

 
 
Lactarius group 

 deliciosus 

 

Residual              1.5016 
 
Year                       0.1645 (13.1%)                       
Residual                 1.0935                           

         1.2254   
 

    0.4056 
    1.0457 

   

 

The models for predicting the conditional yield of edible, marketed and Lactarius group 

deliciosus mushroom in each plot (kg of fresh weight) per year are given as: 

+,-*�. = ���&� =  �. ��=�= + �. �=34 ∗ '_A.8  

;6(<.8., = ���&� = #. F#23 −  �. ��43 ∗ )�,.A8. 8(.. 

?6@86(-7A = ���&�

=  �. #41# + �. ��4>4 ∗ G�'A.8 + ')@8� +  �. >=332 ∗ H.D87(.� +  �. F1�1

∗ H.D87(.# −  �. ��3�3 ∗ )�,.A8. 8(.. 

Where: Pset is total precipitation is the month of September; oldest.tree is the age of the oldest 

tree in the plot; I(Pset + Poct) is the sum of the total precipitation in the month of September and 

October; Texture1 is loamy-sand soil texture; Texture2 is sandy-loam soil texture.  
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The significant predictor in the conditional edible yield model is only Pset and only oldest.tree in 

the plot for the conditional marketed yield model. In the conditional Lactarius group deliciosus 

yield model the significant predictors are I(Pset + Poct), Texture1, Texture2, and oldest.tree.  

One unit increase of Pset increases the conditional yield of edible in the logarithmic scale (log 

scale) by 0.0347, for marketed mushroom one unit increase in the age of the oldest tree decreases 

the conditional yield in the log scale by 0.0074. One unit increase in I(Pset + Poct), increases the 

conditional yield of Lactarius group deliciosus in the log scale by 0.00757. Change from sandy 

soil to Texture1 (Loamy sand) and Texture2 (Sandy loam) increases the conditional yield of 

Lactarius group deliciosus in the log scale by 0.53448 and 0.6919 respectively. One unit increase 

in the age of the oldest tree decreases the conditional yield of Lactarius group deliciosus in log 

scale by 0.00414 (Table 7).  

Table 7. Fixed effect of the selected conditional yield models and Snowdon correction 

Model Predictor Estimate SE  t value Pr(>|t|) Conf.int(95%) 

Edible Intercept   1.11303 0.59733 1.863 0.0842 -0.0541 - 2.2732 
 P_set   0.03471 0.01428 2.431 0.0298 *  0.0069 - 0.0626 
 Snowdon 

Correction 
  1.804405      

       
Marketed Intercept  2.628387  0.24228 10.849 0.00 ***  2.1457 - 3.1035 
 Oldest.tree  -0.007357 0.00224 -3.288 0.0013** -0.0117 - -0.0029 
 Snowdon 

Correction 
1.911274     

       
Lactarius 

group 

deliciosus 

 

 
 
Intercept 

   
 
1.2792 

 
 
0.44859 

  
 
2.852 

 
 
0.0125* 

 
 
0.4032 - 2.1297 

 I(Pset + Poct)   0.007566 0.00328  2.306 0.05* 0.0013 - 0.0141 
 Texture_1   0.534477 0.23574  2.267 0.025* 0.0376 - 0.9798 
 Texture_2   0.691881 0.28396  2.437 0.017* 0.1198 - 1.2357 
 Oldest.tree -0.004144 0.00210 -1.974 0.05* -0.0082- 0.0001 
 Snowdon 

Correction 
 1.770149     
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3.2.1. Performance of the conditional mushroom yield models 

The models predictions were rather unbiased after back-transforming the prediction to the 

original scale and correcting by means of Snowdon’s correction factor (Table 7) for the back-

transformation bias. The expected relationship between observed and predicted values followed 

rather well the 1:1 equality line which denotes the perfect fit (Figure 7). Therefore, most of the 

disagreement between predictions and observations arose from the scatter due to the high 

unexplained variation of mushroom yield. The conditional model for edible mushroom appears 

to fit well in the yield ranging 20 to 40 kg ha-1 yr-1 and over estimates lower yield and under 

estimates maximum yields. The Conditional model for the marketed mushrooms is observed to 

fit very well in all the ranges of the production. Similarly the Lactarius group deliciosus model is 

very well fit; however, it tends to overestimate maximum yield. 

 

Figure 7. Performance of the selected conditional yield models (The solid line is the line of 

perfect fit where-as the dashed line indicates the fit of the selected model) 
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3.2.2. Simulation 

Figure 8 shows some simulation tried based on the models. For edible mushroom it has been 

tried to see the effect of change in September rainfall by fixing the autumn precipitation at mean 

value. The trend shows an increase in the amount of rainfall in September increases the yield of 

edible mushroom. At mean value of autumn precipitation, an increase in age of the oldest tree 

resulted in reduction of marketed mushroom yield. Keeping the values of autumn precipitation, 

pH at mean and age of oldest tree at mean, minimum and maximum values and in sandy loam 

soil texture class, the increase in the total rainfall in October and September increased the yield 

of Lactarius group deliciosus.  These trends indicate the distribution of the rainfall in addition to 

its amount is an important factor in the yield of mushrooms. Autumn precipitation is significant 

factor for the occurrence of mushrooms; however, the simulation produced by keeping the 

autumn precipitation at mean value and changing the amount of September precipitation in case 

of edible mushroom and total rainfall in September and October for Lactarius group deliciosus 

indicated that the way the precipitation is distributed also matters. The simulation by fixing the 

autumn precipitation at maximum and minimum recorded values still showed similar trend with 

the one at mean value.  

The effect of total rainfall in September and October at different age of oldest tree was simulated 

by fixing the age at mean (solid line), minimum (dashed line) and maximum (dotted line) values 

(Figure 8). The effect of rainfall was observed to be higher in plots with the lowest age and least 

in highest age (Figure 8).   
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Figure 8. Simulation of edible, marketed and Lactarius group deliciosus mushrooms (in 

sub-figure for Lactarius, solid line is the simulation at mean age, dashed and the dotted line 

represent, respectively, the simulation at the minimum and maximum stand age recorded 

in the modeling data). 
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4. Discussion 

Our results show the influence of rainfall (especially autumn rainfall) as a driving factor for the 

occurrence of edible, marketed and Lactarius group deliciosus considered in this study. It has 

also been observed that stand and soil characteristics become important predictors as we narrow 

down from broad category like edible to level of Lactarius group deliciosus. This suggests that 

considering at a genus or species level may reveal important relationships involved in the 

occurrence and growth of the mushroom being investigated. Previous studies have also indicated 

that the emergence of sporocarps is strongly related to weather conditions specially rainfall 

(Bonet et al., 2004; Martínez-Peña et al., 2012a). Temperature is another important variable for 

mushroom yield; however, none of the temperature variables were significant at p<0.05 values in 

our study. This may be because the year random factor considered may account for some of the 

between-year variation in temperature. In a climate change scenario where an increase in 

temperature is considered, its consequent effect on transpiration and surface evaporation would 

inevitably affect both occurrence and yield of mushroom.  

Our result has indicated that increasing the age of oldest tree (i.e. a proxy for stand age) 

decreases the production of both marketed and Lactarius group deliciosus. This is in line with 

the study of Fernandez-Toiran et al. (2006), where higher abundance of Laccaria laccata and L. 

deliciosus was found in the age class of 11-20 as compared to the oldest age class. This might 

indicate that marketed mushroom production could be enhanced by maintaining rather young 

stands. In this way, Bonet et al. (2012) has reported positive effect of thinning on Lactarius 

group deliciosus production in 50 years old P. pinaster forests; hence, thinning activity to 

maintain young stands could play a role to maximize the production of these mushrooms.  



 

Ágreda et al. (2013) also indicated that 

by Pinus pinaster stand age class and 

class of 11-20. Bonet et al. (2010)

in younger stands. However, Bo

yield of L. group deliciosus in P

slope and aspect of the sampling plots were quite

observed that the production of ma

basal area which is not considered in our modeling data. 

pinaster, young trees start the growing season earlier than old trees (Viera 

possibly give advantage to Lactarius

photosynthate from the photosyntheticaly active younger trees

It has also been reported that in older stand age class

production (Ágreda, 2013; Martínez

production of marketed and Lactari

seems to be a slight recovery in the 

Figure 9. Relationship between stand age and 

slight recovery of mushroom yield in plots corresponding to the highest stand age class

(concentration of the dots increase at age >120)
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(2013) also indicated that L. deliciosus sporocarp production is highly influenced 

stand age class and maximum production was reported to 

(2010) also found less sporocarp biomass in old-growth stands than 

onet et al. (2004) found no significant differenc

Pinus sylvestris stands with different stand age. 

of the sampling plots were quite homogeneous; however, Bonet 

observed that the production of marketed Lactarius was related to aspect, slope and also stand 

basal area which is not considered in our modeling data. It has been observed 

young trees start the growing season earlier than old trees (Viera et al., 2009). This 

Lactarius group delicious in young stand ages to get more 

from the photosyntheticaly active younger trees and enhance their growth

It has also been reported that in older stand age classes L. deliciosus registered a r

Martínez-Peña et al., 2012b). Even though there is a decrease in the 

Lactarius group deliciosus, the trend in our study shows 

recovery in the highest oldest tree age (Figure 9). 

 

Relationship between stand age and Lactarius group deliciosus yield. The data suggests a 

slight recovery of mushroom yield in plots corresponding to the highest stand age class

(concentration of the dots increase at age >120) 

sporocarp production is highly influenced 

maximum production was reported to occur in the age 

growth stands than 

e in fresh weight 

 In our study, the 

homogeneous; however, Bonet et al. (2008) 

was related to aspect, slope and also stand 

It has been observed that in Pinus 

., 2009). This may 

in young stand ages to get more 

and enhance their growth. 

stered a recovery in 

., 2012b). Even though there is a decrease in the 

the trend in our study shows as there 

yield. The data suggests a 

slight recovery of mushroom yield in plots corresponding to the highest stand age class 
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Our result showed significant effect of pH and soil texture specifically in Lactarius group 

deliciosus. In Pinus sylvestris forests, Martínez-Peña et al. (2012a) reported that none of the soil 

variables they used like pH, texture, water retention capacity were significant in the modeling; 

however, they have indicated a strong correlation with mushroom yield (including with yield of 

L. group deliciosus). They have mentioned negative correlation of sand content with Lactarius 

yield, where as silt and clay content were positively correlated which is in line with our result. 

This could be due to the fact that sandy soils have a lower water holding capacity, and the 

rainfall cannot be utilized efficiently in such soil type. In addition, as the area is characterized by 

higher summer drought, water holding capacity of the soil could be very critical.  In their study 

pH was not correlated with Lactarius but negatively correlated with Boletus edulis. However, 

our result showed a negative relationship between pH and occurrence of L. group deliciosus. The 

genus Lactarius has been reported as being only slightly affected by variations in pH (Espigol, 

1999). However, other results also indicated better performance in the acidic range. Barros et al. 

(2006) showed that the growth of Lactarius deliciosus mycelium is significantly better in the 

slightly acidic soil (pH=5) but the effect of pH was dependent on the medium they used. In a 

study conducted in two commercial nurseries a higher percentage of colonization was observed 

for Lactarius genus on more acidic soil (pH=4.5-5.5) (Gonzalez-Ochoa et al., 2003).  

Madeira and Ribeiro (1995) indicated that decomposition of P. pinaster needles increase the pH 

values. In line with this Kurz et al. (2000) indicated decomposition rate of Pinus pinaster needles 

reaches 50% loss of mass after 5.1 years; hence, the more decomposition of the needles in older 

stands could results in an increase of the pH. This could also justify the negative effect of 

increasing both stand age and pH which could be related due to the expected high decomposition 

of the needles in older stands. It has been indicated as there is a shortage of information 
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regarding the soil requirements of many mushrooms, hence; this result can be a highlight for 

making further structured study.   

The simulation emphasizes the importance of not only amount of rainfall but also its distribution 

on mushroom production. In addition it has revealed that increasing amount of rainfall would 

have more positive impact in younger stand ages.  

 The models provided in this study are valuable tools that can be used to predict the occurrence 

as well as quantify the yield given the occurrence of mushroom for edible, marketed and L. 

group deliciosus in P. pinaster forests in Central Spain. In line with this study an article recently 

published aims at predicting the spatial distribution of Lactarius deliciosus and Lactarius 

salmonicolor in Turkey using logistic regression models (Mumcu Kucuker and Baskent, 2014). 

This kind of approach is useful to have prediction models that predict the occurrence and 

distribution of the mushrooms. We underline the need for further research accounting for 

different stand characteristics, to better understand their relationship with mushroom occurrence 

and productivity and could provide a concrete recommendation for forest managers. But still 

these models could provide tentative recommendations. In addition they can be helpful for 

mushroom pickers in the area, and may also be of use to facilitate the tourism linked to 

mushroom picking. The models are climate sensitive with respect to change in precipitation and 

could be useful for making predictions under climate change conditions.  

 

 

 



29 

 

5. Conclusions 

With the current trend towards integrated forest management and the increased economic value 

of mushrooms this study shades light on the factors that affect mushroom production and 

provides a tool (i.e. models) to predict the occurrence and possibly quantify the amount of 

production and could be of use. 

The two-stage modeling approach has enabled us to assess the effect of the climatic, soil and 

stand variables on mushroom production by separately modeling the probability of occurrence 

and yield given the presence. This approach has created a room to learn more about the system 

than if we used a single model for the yield. Moreover, we have been able to combine the results 

from the two analyses to provide predictions that would be helpful for mushroom picking and 

also for managers. We recommend this kind of modeling approach for handling data from a 

phenomenon with possibility of zero values, in our case mushroom production data. This kind of 

approach is useful to have prediction models that predict the occurrence and spatial distribution 

of the mushrooms and their yield given the occurrence. 

Further research by incorporating various stand variables like stand basal area would be 

worthwhile to improve the models and also to better incorporate it with forest management. 
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Appendix I: Checking statistical assumptions 

 

Slide1. Test for the assumption that the residuals are normally distributed. The 

distribution is considered to be normal to the extent that the plotted points match the 

diagonal line. 
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Slide2. Test for the assumption that the residuals are normally distributed. To the extent 

the histograms matches the normal distribution, the residuals are normally distributed. 

 

 

 

 



38 

 

 

 

Slide3. Test for homogeneity of variance (homoscedasticity) assumption. The homogeneity 

of variance assumption is supported to the extent that the vertical scatter is the same across 

all x values. It is also to assess the assumption that the variables have a linear relationship. 

The linearity assumption is supported to the extent the amount of points scattered above 

and below the line is equal. 

 

 

 

 


