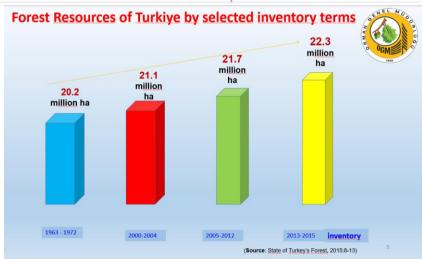


Karadeniz Technical University

2nd Year Specialization Area:

Ecosystem based multi-


est management planning"

Asst. Prof. Uzay KARAHALİL KTU: Karadeniz Technical University Trabzon, TURKEY

State owned 99.9%

- Area: 77.8 million hectares
- Population: 82 million (2018)
- Forest Cover: 22.6 million hectares (covering 29.0 % as of 2019)
- Largest <u>19th Economy</u> as of 2020 (with its \$766.43 billion economy)

MEDfOR Meeting 2020, Palencia

Karadeniz Technical University

The first university in Turkey established outside metropol 1955, 4th across the country. (207 Univ.)

12 faculties

40,000 students 1,242 foreign students

Black Sea

Karadeniz Technical University

Single room =50 €/month

Karadeniz Technical University

Overall satisfaction ranking (188 universities were evaluated)

			Genel		0040	8040
Sıra	Üniversite	N	Memnuniyet	Düzey	2018	2018
			Puani		Puanı	Sıra
1	Özyeğin Üniversitesi	168	546	A+	561	1
2	Sabancı Üniversitesi	141	545	A+	548	4
3	İhsan Doğramacı Bilkent Üniversitesi	195	542	A+	530	6
4	Koç Üniversitesi	163	538	A+	561	2
5	Abdullah Gül Üniversitesi	90	532	A+	528	7
6	Boğaziçi Üniversitesi	199	532	A+	522	11
7	İzmir Yüksek Teknoloji Enstitüsü	160	531	A+	554	3
8	İstanbul Teknik Üniversitesi	285	525	A+	526	8
9	Gebze Teknik Üniversitesi	137	523	A+	523	10
10	MEF Üniversitesi	131	521	A+	508	18
11	Acıbadem Mehmet Ali Aydınlar Üniversitesi	112	521	A+	530	5
12	Akdeniz Üniversitesi	346	516	A+	519	12
13	Piri Reis Üniversitesi	114	516	A+	511	16
14	İstanbul Şehir Üniversitesi	143	511	A+	513	14
15	Kadir Has Üniversitesi	145	505	A	526	9
16	İstanbul Bilgi Üniversitesi	223	502	Α	514	13
17	Galatasaray Üniversitesi	111	500	A	510	17
18	Orta Doğu Teknik Üniversitesi	259	500	Α	495	26
19	Karadeniz Teknik Üniversitesi	303	498	A	495	25
20	Yıldız Teknik Üniversitesi	279	497	Α	505	20
21	Maltepe Üniversitesi	175	495	A	496	23
22	İzmir Ekonomi Üniversitesi	167	495	Α	503	21
23	İstanbul Kültür Üniversitesi	195	493	A	482	34
24	Bezm-İ Âlem Vakıf Üniversitesi	109	492	A	484	30
25	Hacettepe Üniversitesi	344	491	A	470	51
26	İstanbul Üniversitesi	457	490	A	508	19
27	Gazi Üniversitesi	287	489	A	467	53
28	Hasan Kalyoncu Üniversitesi	150	488	Α	512	15
29	Işık Üniversitesi	144	484	A	484	29
30	Ege Üniversitesi	341	482	A	471	50
31	Çukurova Üniversitesi	323	480	A	484	32
32	Sağlık Bilimleri Üniversitesi	148	479	В	480	39
33	Yaşar Üniversitesi	173	479	В	478	41
34	Süleyman Demirel Üniversitesi	320	478	В	502	22
35	Marmara Üniversitesi	401	476	В	482	36
36	İstanbul 29 Mayıs Üniversitesi	92	475	В	479	40
37	KTO Karatay Üniversitesi	162	475	В	484	33
38	Erciyes Üniversitesi	364	474	В	463	57
39	TED Üniversitesi	132	474	В	458	61
40	Burdur Mehmet Akif Ersoy Üniversitesi	226	474	В	472	48

Ranked as **15th** on the «Satisfaction of the Richness of Learning Opportunities and Resources» area

Ranked as **16th** on the «Satisfaction of the campus and life» area

Sıra	Üniversite	N	Genel Memnuniyet Puanı	Düzey	2018 Puanı	2018 Sıra
1	Abdullah Gül Üniversitesi	90	532	A+	528	2
2	Boğaziçi Üniversitesi	199	532	A+	522	5
3	İzmir Yüksek Teknoloji Enstitüsü	160	531	A+	554	1
4	İstanbul Teknik Üniversitesi	285	525	A+	526	3
5	Gebze Teknik Üniversitesi	137	523	A+	523	4
6	Akdeniz Üniversitesi	346	516	A+	519	6
7	Galatasaray Üniversitesi	111	500	A	510	7
8	Orta Doğu Teknik Üniversitesi	259	500	A	495	12
9	Karadeniz Teknik Üniversitesi	303	498	A	495	11
10	Yıldız Teknik Üniversitesi	279	497	A	505	9
11	Hacettepe Üniversitesi	344	491	A	470	26
12	İstanbul Üniversitesi	457	490	A	508	8
13	Gazi Üniversitesi	287	489	A	467	27
14	Ege Üniversitesi	341	482	A	471	25
15	Çukurova Üniversitesi	323	480	A	484	13
16	Sağlık Bilimleri Üniversitesi	148	479	В	480	18
17	Süleyman Demirel Üniversitesi	320	478	B	502	10
18	Marmara Üniversitesi	401	476	В	482	15
19	Erciyes Üniversitesi	364	474	В	463	30
20	Burdur Mehmet Akif Ersoy Üniversitesi	226	474	В	472	24
	An a management of the second second			-		

Faculty of Forestry One of the leading faculties (12) in Turkey, has 4 departments:

□ Forest Engineering - Forest Resources

Forest Industrial Engineering

Landscape Management

UVIId Life Management

MEDfOR Meeting 2020, Palencia

Department of Forest Resources 8 sub department (Forest management, forest protection, silviculture, forest botany...)

□ 17 Prof., 6 Assoc. Prof., 6 Asst. Prof., 17 Res. Asst. (46 academic staff)

- Nearly 80 student-turn out, 80 graduate students
- Management practicum in different ecosystems
- Research forest (6,000 ha), hard to access it though
- 8 Labs: soil, silviculture, genetic, herbarium, entomology, dendrometry, computer, forest management,
- High research interest and capacities in forest management
- Pioneers the use of GIS in forestry and forest management
- □ High profile in applied fire management and biodiversity in Medditerrenean region

EUR-ACE system

Accredited with ANEA-ACE Label

Orman Mühendisliği (Normal Öğretim) Lisans Programı

30 Eylül 2017 – 30 Eylül 2018 tarihleri arasında geçerli olmak üzere MÜDEK tarafından akredite edilmiştir

Mühendislik Eğitim Programları Değerlendirme ve Akreditasyon Derneği

Karadeniz Teknik Üniversitesi Orman Fakültesi tarafından yürütülen

Orman Mühendisliği (Normal Öğretim) Lisans Programı

30 Eylül 2018 - 30 Eylül 2020

tarihleri arasında geçerli olmak üzere MÜDEK tarafından akredite edilmiştir.

13. Janle Prof. Dr. A. Bülent Özgüler MÜDEK MAK Baskanı

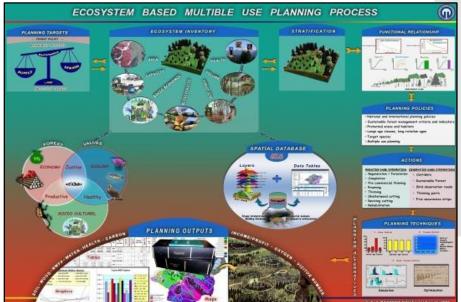
30 Haziran 2018

Prof. Dr. Ramazan Yıldırım MÜDEK Yönetim Kurulu Başkanı 30 Haziran 2018 The Focus...

Specialization area

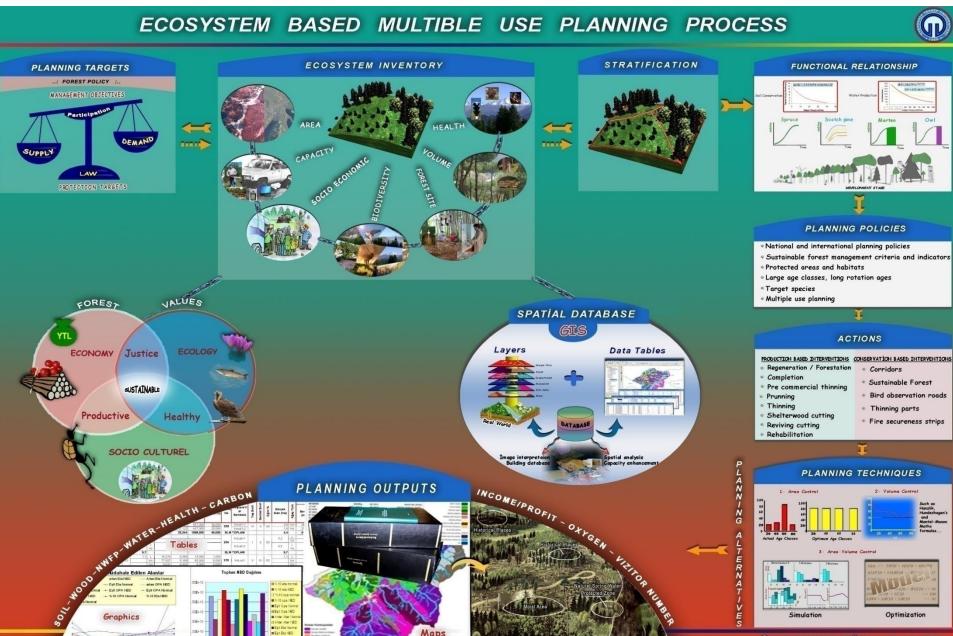
"Ecosystem based multi-use forest management planning"

Contents


Integration of economic, ecologic and socio-cultural values into multiuse forest management planning

Using and developing tools to understand forest dynamics

Geo-Information science, remote sensing applications in forest


management planning

- Biodiversity integration
- □ Fire management

MEDfOR Meeting 2020, Palencia

© E. Z. BAŞKENT, KTÜ Forest Faculty 2006

Asist. Prof. Uzay KARAHALİL

Forest Management Planning

Protected Area Management

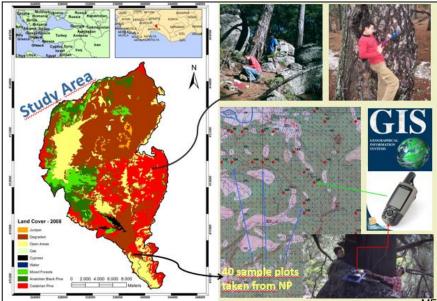
Remote Sensing

GIS

Operations Research

Carbon Measurement

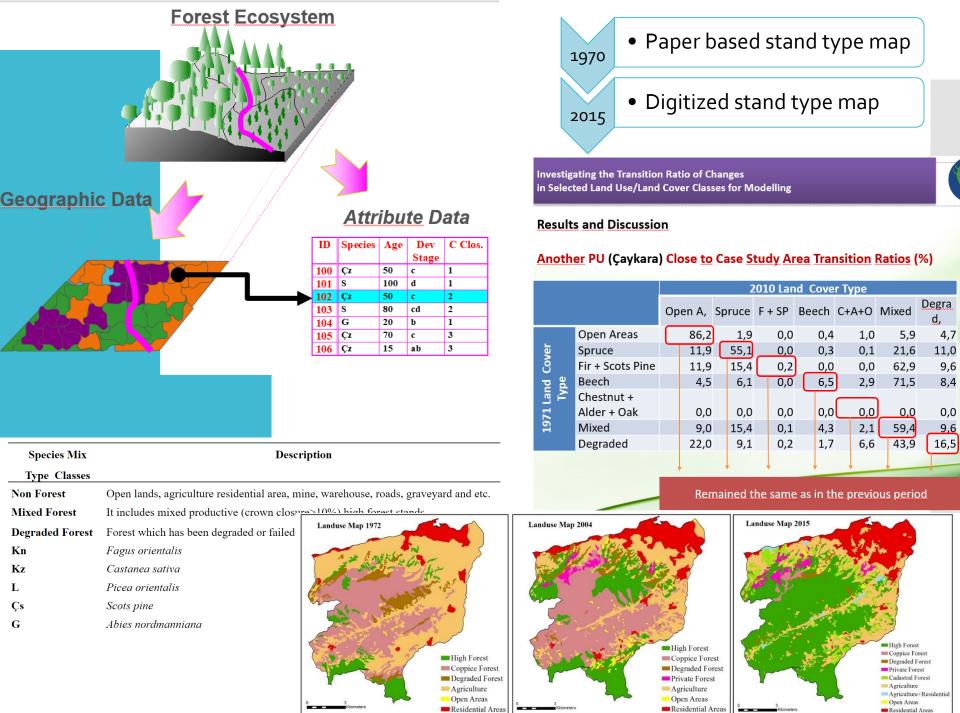
Lecturer: Asst. Prof. Uzay Karahalil h-index 8 i10-index 5


Contents

GIS, components and applications in forest management

Data-information, database management systems, spatial data, topology, vector and raster data models, and data quality.

□ GIS functions of data input, reclassification, overlay, neighbourhood analysis and data display as applied to Mediterranean forests.


A practicum: five assignments in spatial database creation (cover type map) and spatial analysis of forest resources. ArcGIS

Concepts and Principles of GIS in Forestry

MEDFOR Meeting 2020, Palencia

Using

Forest

Satellites

Images in

Ecosystems

h-index i10-index 5

Lecturer: Asst. Prof. Dr. Uzay Karahalil

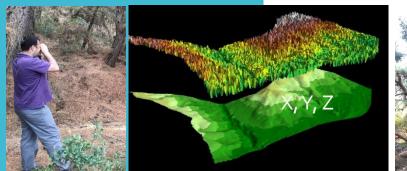
Contents

General information about natural resource satellites, LANDSAT/IKONOS

Resolution, definition of bands, combining bands and opening images.

Mosaicing, rectifying and cutting images

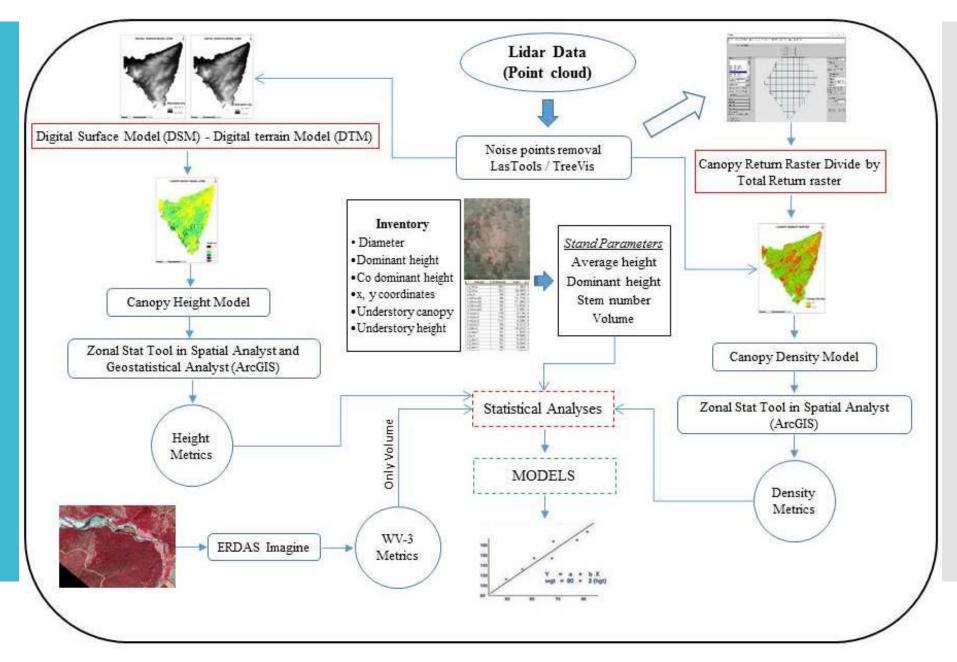
Image enhancement techniques, unsupervised/supervised classification


Case study: Supervised classification of Köprülü Canyon National Park

Estimating Stand Parameters Using Images and LIDAR Data

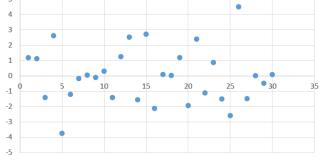
Kennedy KANJA (Zambia)

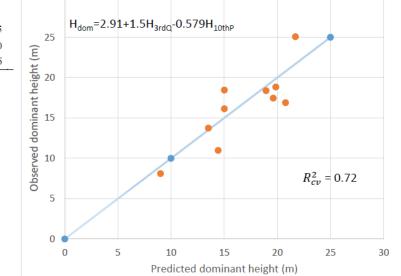
Inventory



.P No	Area m ²	No. of Trees	Trees per ha	Dominant Height (m)	Av. Height m	Total Volume (m ³)	Volume per Ha	Shrub C.C %	Shrub Height (m)
2	600	19	317	10.8	8.7	2.215	36.9	10	1.7
6	400	17	425	15.7	13.3	4.158	103.9	30	1
7	400	32	800	15.2	13.4	8.377	209.4	35	1.5
9	800	20	250	21.6	13.8	7.194	89.9	80	2
10	400	13	325	20.2	17.3	10.207	255.1	25	1.6-1.7
11	400	18	450	24.6	20.	10.077	251.9	40	1.3-1.4
13	800	6	75	14.4	9.92	1.531	19.1	10	3.5-4
16	600	12	200	15.4	12.7	5.509	91.8	100	3.5-4
21	800	8	100	31.1	25	12.888	161.1	5	0.7-0.8
23	600	13	217	20.1	16.1	13.15	219.1	0	0
24	600	10	167	20.2	15.4	16.872	281.2	65	1.6-1.7
25	800	26	325	28.5	21.5	10.193	127.4	40	1.7
26	800	14	175	18.4	15.3	8.803	110.0	10	1.3-1.4
27	400	14	350	16.1	12.2	6.621	165.5	30	1.5
28	400	31	775	15.2	11.9	5.965	149.1	35	1.5-1.6
29	400	40	1000	11.1	8.9	3.301	82.5	10	3
30	400	27	675	15.2	12.3	7.878	196.9	80	2.5-3
31	400	17	425	16.4	14.6	6.047	151.2	15	1
32	400	18	450	14.9	12	3.952	98.8	90	4-4.5
33	600	35	583	14.6	8.5	5.405	90.1	10	1.3
35	600	12	200	27.9	23.6	11.626	193.7	5	1.8-1.9
36	800	13	163	24	21.5	15.675	195.9	30	2.5-3
37	600	18	300	19.5	14.3	10.147	169.1	40	1.7
39	400	19	475	15.8	14.5	3.858	96.4	10	4-4.5
10	600	9	150	14	11.3	2.347	39.1	100	3.5-4
10	600	9	150	14	11.3	2.347	39.1	100	

		and the second second	A STATE OF
	Mean	Minimum	Maximum
Tree height (m)	13.7	6.4	25.0
Dominant height (m)	17.0	8.7	31.1
Tree density (N/ha)	372	75	1750
Volume (m ³ /ha)	130.8	10.1	260.1
Crown closure of	39.2	0	100
shrubs(%)			
Height of shrubs (m)	2.0	0	4.5


Methods

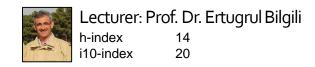


Results

Table 7. Dominant height regression model output

Regression S	Statistics					
Multiple R	0.918					
R Square	0.843					
Adjusted R Square	0.831					
Standard Error	1.881					
Observations	30					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	2	512.591	256.295	72.420	0.000	
Residual	27	95.554	3.539			
Total	29	608.145			30	
	Coefficients	Standard Error	t Stat	P-value		
Intercept	2.909	1.114	2.612	0.015	H _{dom} =2.91+1.5H _{3rdQ} -0.579H _{10thP}	
3rd Q	1.500	0.178	8.448	0.000		
10th P	-0.579	0.262	-2.207	0.036	tr (r	
					. <u>bo</u> 20	
					ut ut ut ut ut ut ut ut ut ut ut ut ut u	
	t height residua	ls scatterplot			.u 15	
		•			(E) the dominant height (E) th	
					pa 10	
		_			§ 10	

Results


Only LiDAR

	V(m3/ha)	N(adet/ha)	hq(m)	h _{üst} (m)
Düzeltilmiş R ²	0,66	0,73	0,83	0,83
Hata	40,4	119	1,80	1,88

LiDAR+WV3

	V(m3/ha)
Düzeltilmiş R²	0,70
Hata	32,3

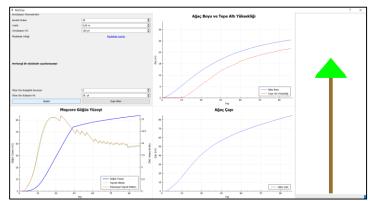
Prof. Dr. Ertugrul Bilgili

- Ph.D., University of New Brunswick, Faculty of Forestry and Environmental Management, Canada.
- MScF, University of New Brunswick, Faculty of Forestry, Faculty of Forestry and Environmental Management, Canada

Research fields

- Forest protection
- Forest fires
- Fire behavior
- Fire risk&danger assessment
- Fire ecology
- Statistics / single tree Growth&Yield modeling
- Fire management

Lecturer: Prof. Dr. Ertugrul Bilgili h-index 14 i10-index 20


Objectives of the Course

□ To acquaint students with the ecological modelling concept, modeling approaches and implications.

Contents of the Course

Concept of ecological modelling, modelling approaches, model applications in forestry, model development, model development principles, bounding, parsimony, flow chart, sensitivity analysis, and verification in modelling.

Ecological Modelling

Lecturer: Prof. Dr. Ertugrul Bilgili h-index 14 i10-index 20

Learning Outcomes

Report on the concept of ecological modeling in forest ecosystems.

Discuss modeling approaches and identify the key differences between them.

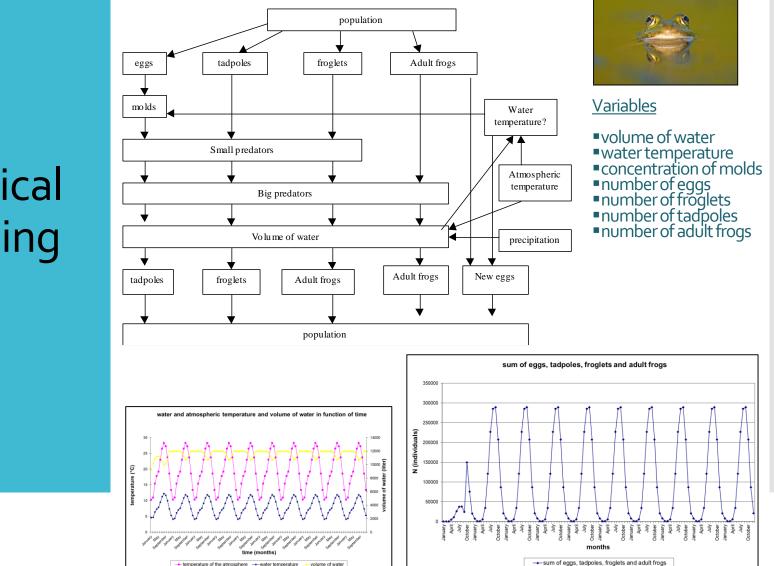
List the model development principles, define modeling terminology.

Develop a flow chart of a dynamic process and develop a simple dynamic model to simulate it.

Conduct sensitivity analyses and validate the models using independent data.

Report and present model results.

Ecological Modelling


Lecturer: Prof. Dr. Ertugrul Bilgili h-index 14 20 i10-index

Student Project Sample

temperature of the atmosphere

-- water temperature

Design of a dynamic model for a frog population in a pond.

Ecological Modelling

Lecturer: Prof. Dr. Ertugrul Bilgili h-index 14 i10-index 20

Objectives of the Course

To enable students to understand the importance and role of biodiversity in the protection of forest resources.

Contents of the Course

Concepts of ecosystem and biodiversity, the structure and functions of different forest ecosystems, principle components of biodiversity, indicator, keystone, and flag species, habitats and biodiversity, patch Dynamics.

Protecting Biodiversity in Forest Ecosystems

Lecturer: Prof. Dr. Ertugrul Bilgili h-index 14 i10-index 20

Learning Outcomes

Define biodiversity and explain its importance.

Explain the structure and functions of different forest ecosystems.

Relate biodiversity to the well being of ecosystems.

Define indicator, keystone and flagship species and relate them to the protection, maintenance and survival of ecosystem components.

Explain the role of patch dynamics in the protection of biodiversity.

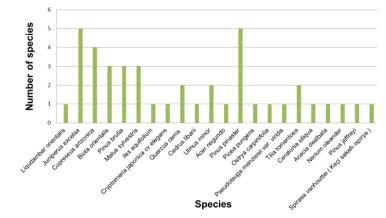
Evaluate and discuss the threats to biodiversity.

Calculate indexes of biodiversity (richness, evenness).

Report and present the findings before an audience.

Protecting Biodiversity in Forest Ecosystems

Lecturer: Prof. Dr. Ertugrul Bilgili h-index 14 i10-index 20


Student Project Sample

- Measurements of Biodiversity in Forest Ecosystems – Tree Species diversity

Protecting Biodiversity in Forest Ecosystems

Sampling Area	Shannon Index	Simpson Index	
First	2,89	0,93	
Second	2,12	0,86	
Normal Range	1,5 - 3,5	0-1,0	

Plot # 1

Plot # 2

Lecturer: Prof. Dr. Ertugrul Bilgili h-index 14 i10-index 20

Objectives of the Course

□ To acquaint students with the ecological role of fires in forest ecosystems.

Contents of the Course

The use of fire, the concept of fire ecology, forest fires as an ecological entity, the role of fires in the formation and maintenance of forest ecosystems, the relationship between forest and fire, the effects of fires on plants, soil, weather and wildlife.

□ Fires as a management tool, controlled and prescribed burnings.

The effect of climate change on wildland fires, and future fire scenarios under expected climate change conditions. Impacts, adaptation and mitigation of climate change.

Fire Ecology

Lecturer: Prof. Dr. Ertugrul Bilgili h-index 14 i10-index 20

Learning Outcomes

Define the concept of fire ecology and explain its importance in understanding the functioning of fire dependent ecosystems.

Examine and explain the effect of fire on vegetation and soil properties.

Discuss fire as a disturbance agent in many ecosystems.

Explain and discuss species adaptations to fire (plant succession) and illustrate it using a schematic model.

Formulate prescription for the use of fire as a management tool (controlled and prescribed burning)

Understand and discuss the effect of global climate change on forest fires

Fire Ecology

Prof. Dr. Salih TERZİOĞLU

Research fields

- Forest Botany
- Plant species
- Plant biodiversity
- Non Wood Plant Products
- Biodiversity conservation

Lecturer: Prof. Dr. Salih Terzioglu h-index 12 i10-index 18

Principles of Identifying Vascular Plants

Objectives of the Course

This course aims to provide graduate student how they identify the vascular plant taxa and the prepareing the identification keys.

Contents of the Course

Vegetative and generative organs of Vascular plants (Spermotophyta (Gymnospermae, Angiospermae) and Pteridophyta)

Preparing identification keys and their usage in identifying plant taxa.

Plant association and plant sociology

Biodiversity and its components

□ Vegetation classification by: Braun-Blanquet, IUCN, EUNIS, Natura2000

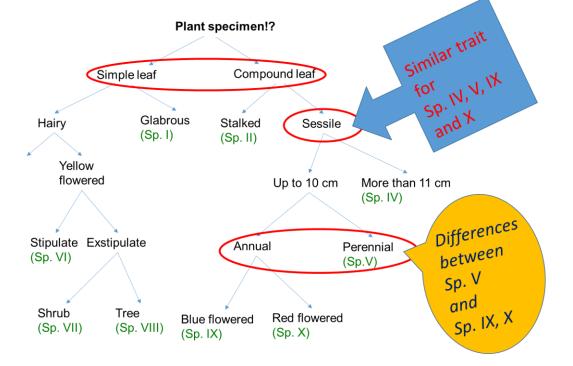
Floristic list, characteristic species, habitats, minimal areas

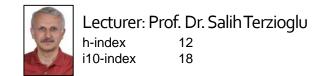
Integration of biodiversity (flora) into forest management plans

Case study: Field work

Lecturer: Prof. Dr. Salih Terzioglu h-index 12 i10-index 18

Principles of Identifying Vascular Plants


Learning Outcomes


Understand different vegetative and generative organs of vascular plant taxa.

Use different plant identification keys (Multi-access, dichotomous etc.)

Identify the families of vascular plants.

Identify the living and/or herbarium materials of vascular plants.

Prof. Selahattin KÖSE

Modelling techniqes as OR

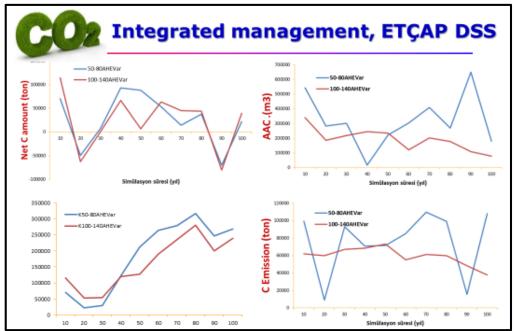
Forest management planning

Integrating forest values into forest management plans

Ecosystem based multiobjective forest management planning

Lecturer: Prof. Selahattin KÖSE

Contents


Forest values and multiobjective programming problems

Multiobjective formulations (Focusing on Goal Programming)

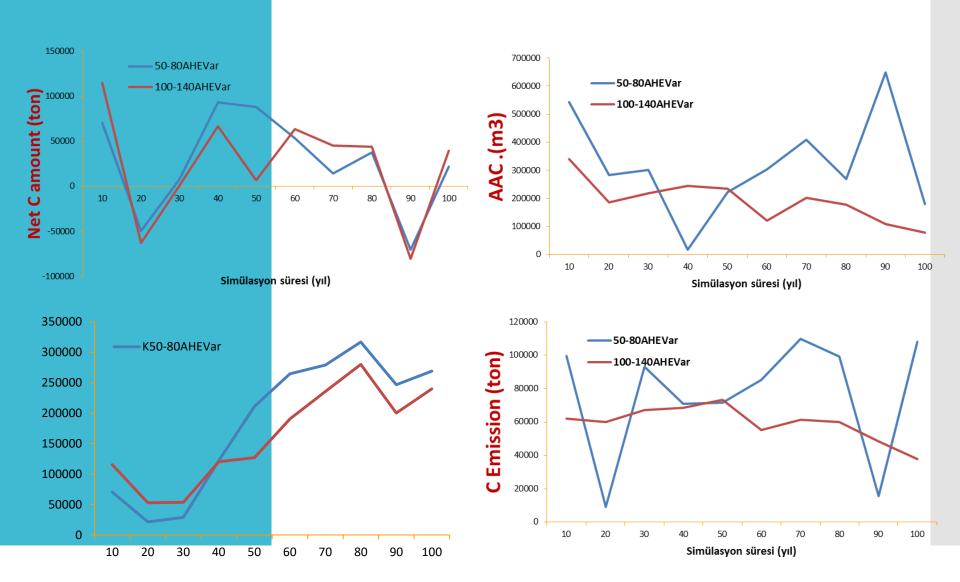
Model buildings for few case study areas

Project work: development and presentations of sample For Mgtm models

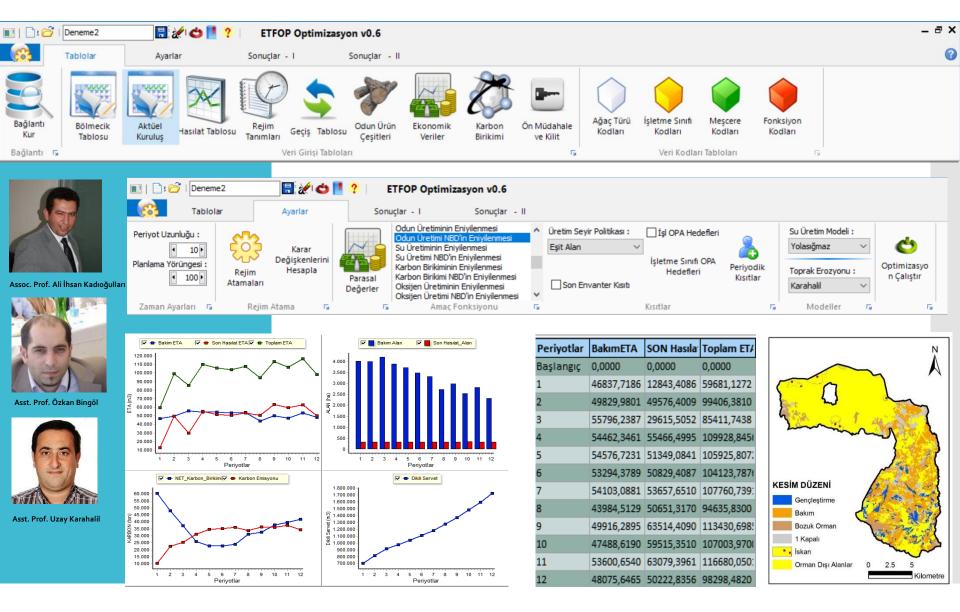
Understanding the cause-effect relationships

Multiobjective Planning (Forest Dynamics & Modelling)

Multiobjective Planning (Forest **Dynamics** and Modelling)



Contents


- General principles of forest dynamics; the relationships of tree, stand, habitat, ecosystem and forests
- Natural disturbances and management actions/treatments to be applied to forests
- Description of compositional and configuration of forest ecosystems
- Monitoring the spatio-temporal changes of forest ecosystems
- The effects of changes in spatial structure of forests and their relationships to forest management objectives
- Modelling forest management problems with linear programming
- Development of plan alternatives, model outputs, assessment of forest dynamics with performance indicators and comparison of various planning alternatives

Integrated management, ETFOP DSS

ETFOP (ECOSYSTEM BASED MULTI FUNCTIONAL PLANNING) DSS

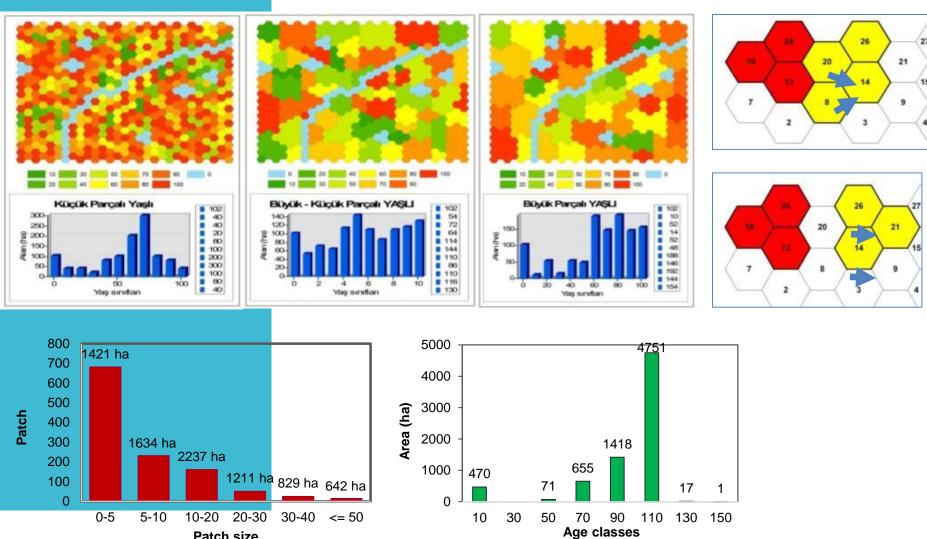
Spatial Planning in Forest Management

Lecturer: Prof. Selahattin KÖSE

Contents

Spatial planning, spatial parameters such as block size, opening size, adjacency or green-up, proximity distance and their use in forest management

Spatial forest modeling techniques such as Tabu search and Simulated annealing

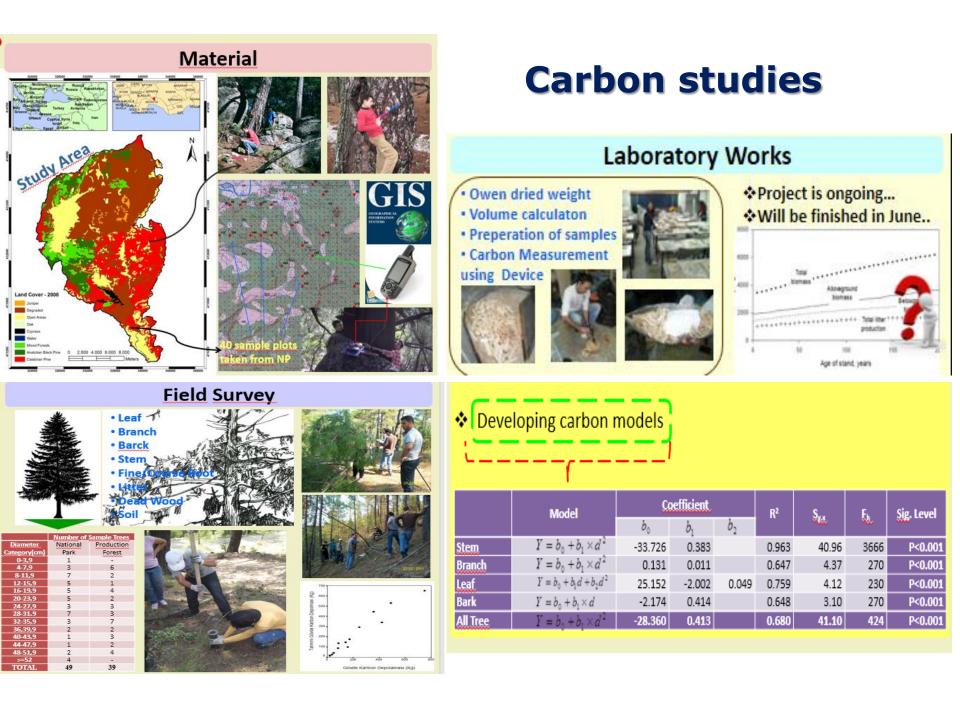

Forest landscape structure and fragmentation indexes (class area, patch size, landscape similarity index, number of patch, patch density, mean patch size)

The use of spatial parameters and metrics in decision making process

Application of spatial forest management planning models using ETFOP

Spatial Modeling

Patch size


Prof. Mehmet MISIR

Modelling techniqes as OR

Forest management planning

Remote sensing applications

Integrating carbon sequestration into forest management plans

Graduate Courses

Forest Ecosystem Management

Objectives of the Course

Lecturer: Prof. Mehmet MISIR h-index 5 i10-index 2

This course aims to explore various values of forest ecosystems in preparing a participatory based multiple use forest management plans focusing on ecologic, economic and socio-cultural values.

Contents of the Course

- Exploring the role of ecological integrity, biodiversity, forest healthy, habitat management, natural disturbances and spatial planning in ecosystem management.
- Forest certification and sustainable forest management criteria and indicators.
- Social, ecological, economic and technological aspects of ecosystem management.
- Identification and examination of factors affecting forest landscape patterns/structure and process over time. Application of management science techniques to ecosystem management

Other researchers...

Staff	Area of Expertise
Prof. Mahmut EROĞLU	Pest management
Prof. Hakkı YAVUZ	Growth and yield
Prof. Cantürk GÜMÜŞ	Forest Policy
Prof. Z. Cemal ÖZKAN	Dendrology
Prof. M. Fehmi TÜRKER	Forest economics
Prof. Ali Ömer ÜÇLER	Tree Improvement
Prof. İbrahim TURNA	Forest Renewal
Prof. Devlet TOKSOY	Forest economics
Prof. Bedri SERDAR	Wood Anatomy
Prof. Nuray MISIR	Growth and yield
Prof. Murat YILMAZ	Forest Ecology
Prof. Ömer KARA	Watershed Mngmt
Prof. Selçuk GÜMÜŞ	Transportation

Staff	Area of Expertise
Asoc.Prof. Sez.HACISALİHOĞLU	Watershed Mngemt
Asoc.Prof. Erhan ÇALIŞKAN	Transportation
Asoc.Prof. Dr. Zafer YÜCESAN	Silviculture
Ast.Prof. Dr. Arslan OKATAN	Range management
Ast.Prof. Dr. Sefa AKBULUT	Plant science
Ast.Prof. Dr. Saliha ÜNVER OKAN	Transportation
Ast.Prof. Dr. Oğuz KURDOĞLU	Social forestry
Ast.Prof. Dr. Mahmut BAYRAMOĞLU	Forest economics
Ast.Prof. Dr. Ercan OKTAN	Silviculture

Draft Thesis Topics -I Land use changes and their implications to forest management planning

Estimating some forest parameters using remote sensing

Integration of soil conservation/water production into forest management plans

Integration of carbon sequestration into forest management planning

Evaluation of forest dynamics under various management strategies in preparing forest management plans

The effects of various rotation periods on the performance of forest ecosystems

Integration of climate change into forest management plans

MEDfOR Meeting 2020, Palencia

Draft Thesis Topics -II

Preparing a spatially feasible forest management plans with GIS
Management planning of industrial plantation with fast growing trees

Integration of fire management into forest management plans

Integrating plant diversity into forest management plans

TODE TO

Research activities

Ongoing projects...

- TÜBİTAK project Determining Carbon sequestration for pure and mixed Cremian Pine stands
- Erasmus+ Project: Developing Protocol for Carbon Storage Studies
- □ H2020: ALTERFOR; Alternative FMM, 21 Partners, 17 countries, 13 cases
- KTU Research Projects (KTU) Determing carbon storage for managed and protected Calabrian Pine stands
- GDF-AFD-ONFI-KTU Exploring the Adaptation Potential of Marmara Forests to Climate Change
- CEM-TUBITAK-KTU National Land Cover / Use Classification and Monitoring System (UASIS)

Our Graduate Students Juan MENACOSTA (MSc), Spain (Finished, 2016)-MEDFOR
Kennedy KANJA (MSc), Zambia (Finished, 2016)

Sidra Ijaz KHAN (MSc), Pakistan (Finished, 2017)-MEDFOR

ä

Sauti RAYMOND (MSc), Rwanda (Finished, 2019)

Elharith HAGR (MSc), Sudan (Finished, 2019)

Fosso CONSTANTIN (PhD), Cameroon

Moussa MBHOU (PhD), Cameroon

Sauti RAYMOND (PhD), Rwanda

113 Exploring Spatiotemporal Dynamics of Gölcük Planning Unit (43 Years) & Implications of International Convention Sidra Khan, Karadeniz Technical University-Medfor IV. Türkiye İklim Değişikliği Kongresi – TİKDEK'2017 IV. Turkey Climate Change Congress - TCLCC'2017 5-7 Temmuz 2017, İstanbul, Turkey

INTEGRATION OF CLIMATE CHANGE TO FOREST MANAGEMENT

PRACTICES: DRIVEN FACTORS AND CONCEPTUAL FRAMEWORK

Fosso Lionel Constantin¹, Uzay Karahalil²

Karadeniz Technical University Faculty of Forestry Department of Forest Engineering 61080 TRABZON

folionelc@yahoo.fr ; uzay@ktu.edu.tr

Last Semester - (2019 Fall)

Julia KACHANOVA (Russia)

Angham DAIYOUB (Syria)

Takele MULETA (Ethiophia)

Why KTU of Turkey?

Different landscape, ecosystems and culture to experience

Qualified academics and good infrastructure

Cozy campus life with different fields of research

Easy access and convenient place to live

University has ECTS label, diploma supplement and accreditation

Awarded with MÜDEK/ABET/EUR-ACE accreditation certificate

Cheap and beautiful to travel around

www.ktu.edu.tr/ofinafen

Asst. Prof. Uzay KARAHALİL: uzay@ktu.edu.tr

KARADENİZ TECHNICAL UNIVERSITY OFFICE OF INTERNATIONAL RELATIONS

ERASMUS+ OFFICE

E-mail: ofinaf@ktu.edu.tr

Working Hours: 08:00 - 12:00 / 13:00 - 17:00

Mrs. Cigdem HÜSEM Contact Person for Incoming Students

Phone: + 90 462 377 3797 Fax: + 90 462 325 32 32

Postal Address: Karadeniz Teknik Üniversitesi, Dış İlişkiler/Erasmus Ofisi, Rektörlük, 61080, Trabzon, Turkey

MEDfOR Meeting 2020, Palencia

E-mail: cigdemhusem@ktu.edu.tr

Erasmus team to help **YOU**...

Thanks...

State Alexand

A12373120