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RESUMEN 

 

En este siglo XXI, uno de las principales aspectos en la gestión sostenible de los recursos son las 

estimaciones de las reservas forestales de carbono y los balances de carbono para las diferentes 

especies tanto a nivel global como local. Este trabajo de investigación se centra principalmente en 

ilustrar cómo la mezcla de especies en los rodales forestales afecta las relaciones alométricas de 

biomasa y la distribución de la misma en rodales monoespecíficos y mixtos en Pinus sylvestris L. y 

Quercus petraea (Matts.) Liebl. En este estudio, ajustamos 4 modelos diferentes de altura y 

diámetro para bosque monoespecífico y mixto para especies de pino silvestre y roble albar. La 

curva de Korf para los modelos de altura y diámetro se comportó mejor que otros modelos como 

los valores de AIC más bajo y R² más alto sugieren. Además, no se encontró diferencias en la 

relación altura diámetro en los robles entre las masas puras y mixtas. Si embargo, se encontraron 

diferencias en la relación altura-diámetro entre masas puras y mixtas en el caso del pino sislvestre. 

El desarrollo de modelos de altura-diámetro que estiman la altura del árbol utilizando un 

subconjunto de árboles muestreados presenta un enfoque para complementar los muestreos 

donde solo se ha medido el diámetro.  

El análisis de ANCOVA demostró que la alometría de la biomasa de árboles del monoespecífico 

muestra un contraste con el soporte mixto, pero la diferencia no es significativa.  

Se usó la regresión de ajuste Dirichlet para seleccionar los mejores modelos de biomasa con el 

diámetro a la altura del pecho (DBH) y la altura total (Ht) como variables / predictores 

independientes para ambas especies. La biomasa aérea total de rodales mixtos no fue 

significativamente diferente de los rodales monoespecíficos. Esto implica que la proporción de 

biomasa en diferentes componentes de árboles de árboles de rodales mixtos es similar a la de 

árboles de rodales monoespecíficos. Los resultados muestran que la mayor proporción de 

biomasa, para las 2 especies analizadas, se encuentra en el fuste y la menor en el follaje. Por lo 

tanto, los modelos alométricos de biomasa desarrollados a partir de rodales monoespecíficos se 

pueden utilizar para predecir la biomasa de árboles en rodales mixtos sin un error importante. 

Palabras clave: pino silvestre, roble albar, regresiones Dirichlet, biomasa aérea, distribución de 

biomasa,  
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ABSTRACT 

 

At this 21st century, one of the key landmarks in sustainable resource management is the 

estimations of forest carbon stocks and carbon balances at different geographical ranges and 

coming up with efficient forestry solutions to mitigate climate change. Thus, the comprehension of 

forest carbon cycles and dynamics for sustainable resource management needs quantification of 

forest biomass at the species both global and local level. This research work was mainly focused 

on illustrating how the forest stand mixture affect biomass allometric relationships and allocation of 

biomass in monospecific and mixed stands of Pinus Sylvestris L. and Quercus petraea (Matts.) 

Lieb. in Northern Spain. In this study, we fit 4 different height-diameter models for monospecific and 

mixed forest for Scots pine and Sessile oak species. The Korf curve for height-diameter models 

performed better than other models as the lowest AIC and highest R² obtained suggest. In addition, 

there is a no variation of height-diameter relationships for oak trees in monospecific or mixed 

stands. However, an extensive difference in the monospecific and mixed stands for Scots pine was 

found. The development of height-diameter models that estimate tree height using a subset of 

sampled trees presents an approach to supplement surveys where only diameter has been 

measured. 

ANCOVA analysis proved that the tree biomass allometry of the monospecific show contrast from 

the mixed stand but the difference is not significative. Dirichlet fitting regression was used to select 

the best biomass models with the diameter at breast height (DBH) and total height (Ht) as 

independent variables/predictors for both species. the total aboveground biomass of mixed stands 

was not significantly different from monospecific stands. Also, the proportion of biomass in different 

tree component of mixed stand trees is similar to that of monospecific stand trees. The results 

illustrate that the largest biomass allocation for the 2 species was on stem and the least was on 

foliage. Therefore, the biomass allometric models developed from monospecific stands can be used 

to predict tree biomass in mixed stands without an important error.     

 

Keywords: Scots pine, Sessile oak, Dirichlet regressions, aboveground biomass, biomass 

allocation 
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1. INTRODUCTION 

The forests allocate great amounts of carbon in their plant tissues, playing a key role in controlling 

the atmospheric CO2 balance on earth (Wang, Fang, & Zhu B, 2008), thus there is the need to 

estimate its biomass, and the relationships among covariables. As there is an increased interest in 

carbon accounting in forest ecosystems, there is a need for efficient methods to estimate the 

above- as well as the below-ground biomass components of the trees (Næsset, 2004). However, 

because of the high costs and time consuming efforts to estimate below-ground biomass, nearly all 

carbon-associated research is limited to above-ground biomass (Yuen et al., 2013; Ziegler et al., 

2012). For this reason, majority of the research works regarding tree biomass use allometric 

equations which has been developed out of the traditional harvesting and weighing of trees. Usually 

the allometry equations are built on aboveground biomass because the forest ecosystems capture 

most of the carbon pools in the aboveground biomass (Vashum & Jayakumar, 2012). In addition, 

Czapowskyj et al., (1985) and  Xiao et al., (2003) found that 80% or more of biomass contain in the 

above-ground components compared to belowground. This explains that the above-ground 

biomass is the central point of carbon storage. As a result, most studies focus on above-ground 

neglecting the belowground biomass that necessitates uprooting of tree roots but there may be 

some differences between conifers and broadleaves species.  

Scots pine (Pinus sylvestris L.) being the most widely distributed of the pine species and amongst 

the most important timber species in Eurasia (Stanners & Bourdeau, 1995; Mason & Alía, 2000) 

due to its ability to thrive on different subtracts, well-developed or poor soils, in cool wet climates, or 

in very cold to extremely cold continental climates (Cañellas et al., 2000). Stanners & Bourdeau 

(1995) stated that Scots pine forests is an important part of Europe’s carbon budget covering 24% 

of the total forested area (75 million km2). Also, Quercus petraea (Matt.) Liebl., (sessile oak) are 

common broadleaved tree species in Europe.  

Scots pine and sessile oak are two main forest species in the temperate regions not only because 

of their widest distribution but also their vital socio-economic and ecological importance. Since both 

species grow well with other species, it is essential to know the effect of mixture for such 

composition. Recently, a number of research has been conducted on mixed stands (Dutca et al., 

2017) but none of the research work has focused on mixed stands of Scots pine and Sessile oak. 

Mixture could be more advantageous than monospecific stands depending on the composition of 

mixture. Research by  (Pretzsch, 2018) affirmed that forest dynamics including growth and yield is 

positively influenced by forest composition (monospecific or mixed stands). Furthermore, several 

studies have supported and shown evidence of the advantages of mixed forest to monospecific 
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forests (Gamfeldt et al., 2013; Pretzsch et al., 2015). Therefore, this study could help in knowing 

whether Scots pine admixture with Sessile oak exhibit aboveground competition, reduced 

competition or facilitation especially in terms of light availability. In terms of biomass production, 

much of the biomass research has been conducted in monospecific forests, being most of the 

studies limited to local or regional sites and not a complete set of forest species were studied. 

Most of the forest managers have even moved their focus towards mixed forest presently (Lu et al., 

2018) as a way of adaptation against the climate change. Thus, the practice of slowly moving from 

monospecific forests to mixed forests has now become very popular in most areas in Europe  

(Agnoletti, 2006) as a result of the positive benefits provided by mixed forest in productivity, 

stability, and ecosystem services (Keenan, 2012; Bauhus. et al., 2013; del Río et al., 2017). Mixed 

forests had received immensely attention in forestry due to its crucial influence in species diversity, 

forest adaptation and mitigation of climate change.  

The concept of monospecific forests is well studied and unveil whereas scientific advances about 

mixed forests are recent, some knowledge gaps have been identified (Coll et al., 2018). For 

example, the use of existing biomass models developed mainly in monocultures forests. These 

models should be tested and checked for accuracy in mixed forests. However, if monospecific 

models are not suitable to mixed forests new biomass species-specific models should be 

developed and fitted for mixed stands. The outcome of the few studies performed on mixed forests 

is difficult to generalize because of the changes in the forest structure (Forrester & Pretzsch, 2015) 

. Most of the studies affirm that, mostly encouraging mixed-species forests can be an appropriate 

and convenient alternative to cope with climate change-induced impacts. Although there are other 

studies regard to mixed stands, example del Rio & Sterba, (2009) found the contrary.  

The changes of height-diameter relationships mostly depend on the species composition and the 

environmental conditions of the region (Augusto da Silva Scaranello et al., 2012).  Tree height is 

usually used as an independent variable for forest models, but due to its high-cost and difficulty in 

measuring the height. Site-specific height-diameter models is used as the best option for height 

measurements (Batista, Couto, & Marquesini, 2001). 

Most of the studies on mixing effects pay attention primarily on stand density and species 

composition (del Río et al., 2018). Therefore, more research work needs to show stand dynamics in 

mixed forests including mixed-effect models in the prediction of height-diameter (H-D) relationship. 

It is obvious that height to diameter functions are so important in predicting height growth   (Augusto 
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da Silva Scaranello et al., 2012), and also in many growth and yield models  (Augusto da Silva 

Scaranello et al., 2012); Huang et al., 1992). Therefore, they need not to be neglected during 

studies. So, one of the main questions is whether the mixed forests have different tree biomass 

allocation and tree allometry to monospecific forests in order to improve our knowledge regarding 

stand dynamics of tree mixture. Nevertheless, we need to take into account the species 

composition and species proportion of mixture (Légaré, Paré, & Bergeron, 2004) in order that our 

results can be generalized. Many research works have been done comparing monospecific and 

mixed stands, but it is still not well known how tree biomass models are influenced by forest 

composition. It is essential to understand and address the changes in tree biomass allometry due to 

tree mixture and its implication on silviculture and carbon sequestration in order to mitigate climate 

change (Dutca et al., 2017). Moreover, complementarity effects between species mixtures could 

cause changes in allometry due to distinct utility of available resources due to the differences in 

temperament (shade tolerance) or rooting patter (shallower or deeper). 

Using forest inventory data for carbon estimation often depends on species-specific biomass 

equations and/or biomass expansion factors which is obtained with the help of empirical data. 

Hence, models development need sample tree harvesting, measurement and also determination of 

the dry weight of various biomass components (Correia et al., 2018). There are numerous studies 

that developed allometric biomass equations for several forest tree species all over the world ( 

Pastor et al.,1984; Zianis et al., 2005; Henry et al., 2011; Mosseler et al., 2014; Luo et al., 2019). 

The most prevailing tree variables used in biomass model fitting is diameter at the breast height, 

1.30 m from stem base (Karlik & Chojnacky, 2014) as it is usually measured in all forest inventories. 

Other variables that have been used in biomass models are including total tree height, crown 

length, basal diameter, or wood specific gravity to include species identity (Hunter et al., 2013; 

Burquez et al., 2014; Dahlhausen et al., 2017). Forest modelling was improved with the introduction 

of the use of seemingly unrelated regression, SUR (Zellner, 1962; Zellner & Theil, 1962). The 

generalization of this technique for fitting different tree component biomass equations mainly stem, 

branches and foliage (Parresol, 1999); (Parresol, 2001) allows to provide accurate biomass models. 

This is because it ensures additivity between components and total biomass predictions thus, 

assure that the total tree aboveground biomass is the sum total of the aboveground component 

estimations (Balboa-Murias et al., 2006; Ruiz-Peinado et al., 2011, 2012; Tesfaye et al., 2016; 

Correia et al., 2018). Nevertheless, other methodologies for fitting are based in predicting the 

proportions of biomass in each component using Beta regression, Dirichlet regressions or 

Multinomial In-linear regression (Poudel & Temesgen, 2016a); Eker et al.,, 2017). In order to obtain 
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the amount of biomass for every component, the predicted proportions are applied to the observed 

total aboveground biomass (Poudel & Temesgen, 2015) . The Dirichlet regression, which has been 

recently tested in order to observe the additivity property between biomass compartments and total 

aboveground biomass, will be used in this study as in some works has been identified as better 

than SUR fitting and it is implemented in R 3.5.3 software by using package ‘DirichReg’ (Maier, 

2014). 

We may be affronter by some crucial limitations even though the functions used are relatively 

simple but could present some issues. Firstly, the functions are not particularly generic: if we 

change species, the equations must be used with caution. Also, other limitations about the biomass 

study can be related with the small number of harvested trees that could influence the 

generalization of the results, although the samples are collected along the diameter range found in 

the stands.  

2. OBJECTIVES 

The essential objective of this study is to know if the stand dynamics of trees growing in Scots pine 

(Pinus sylvestris L.) monocultures, sessile oak (Quercus petraea (L.) H. Karst) monospecific stands 

and in Scots pine - sessile oak mixed stands differ. For this objective, some allometric relationships 

and the biomass allocation pattern of the species will be studied in both monospecific and mixed 

stands. 

However, to make the studies feasible, certain number of specified objectives need to be assigned 

to this work: 

✓ To examine the relation of DBH-H equation and biomass allometry in monospecific and mixed 

stands. 

✓ To predict the total aboveground biomass and proportion of biomass in each component to 

account for the differences and changes among the stands.  

✓ To develop tree biomass models for monospecific Scots pine (Pinus sylvestris.) stands, 

monospecific sessile oak (Quercus petraea) stands and Scots pine - sessile oak mixed stands 

for different biomass components (stems, thick and thin branches, and foliage) and to 

determine whether the estimated models differ from its monospecific and mixed stands.  



 

Tree biomass allocation in temperate mixed forests 

 

 

 
 
Eric Cudjoe 
Master Erasmus Mundus in Mediterranean Forestry and Natural Resources Management (MEDfOR)  

 

14 

3. MATERIALS AND METHODS 

3.1. Study area 

This study was performed in two forest stands, located at the north of Burgos (Busnela 

municipality) and north of Palencia (municipality of Aguilar de Campoo) in the Cantabrian 

Mountains. In these forest stands, two thinning trials were installed by the INIA-CIFOR (Burgos 

site) and the University of Valladolid (Palencia site). Every site includes also a control (no thinning) 

and a thinning experiment. The thinning sites were implemented in research collaboration between 

European institutions under the umbrella of the REFORM-mixing project (http://www.reform-

mixing.eu/). Both sites were designed with the methodoIny called triplet that has been used by this 

publication (Heym et al., 2017). Each triplet contained a monospecific Scots pine plot, a 

monospecific sessile oak plot and a mixed plot. Every plot shows similar site characteristics (soil 

conditions, site quality, environmental and silvicultural conditions etc.) and similar DBH range. 

Fortunately, the triplet experiment provides more information on the mixing effect of species 

precisely Scots pine and sessile oak. The stand in Burgos was established as a plantation of 

Scots pine and natural regeneration of sessile oak, while the stand in Palencia consisted of natural 

regeneration of both species. Both locations have trees of the same ages in its pure and mixed 

stands. The elevation of both stand sites ranges from approximately 760-1300 m and with sandy 

loam as soil type. It has a cold and temperate climate. One peculiar case was the nomenclature of 

the triplet, Bravo 1 was the first triplet in Palencia and Bravo 2 was the second triplet in Palencia. 

On the other site, Rio 1 was the first triplet in Burgos and Rio 2 was the second triplet in Burgos. 

 

 

Figure 1: Map of the study area in the North of Palencia and the North of Burgos 

http://www.reform-mixing.eu/
http://www.reform-mixing.eu/


 

Tree biomass allocation in temperate mixed forests 

 

 

 
 
Eric Cudjoe 
Master Erasmus Mundus in Mediterranean Forestry and Natural Resources Management (MEDfOR)  

 

 

Table 9:  General stand characteristics for the two studied sites (Palencia and Burgos, Northern Spain) 

Site Triplet Plot Long (°W) Lat (°N) Alt (m) Slope (%) Mean DBH Mean Ht Area (ha) N BA 

Palencia 

Bravo 1 

Pure pine 04°14'31.98'' 42°53'52.09'' 1066 16 26.92 17.43 0.062 1134 71.30 

Pure oak 04°14'22.60'' 42°53'43.47'' 1512 10 17.89 15.29 0.062 1240 58.70 

Mixed 04°14'32.22'' 42°53'41.91'' 1188 11 23.51 17.69 0.089 1165 54.20 

Bravo 2 

Pure pine 04°14'36.02'' 42°53'51.04'' 1185 17 29.91 18.05 0.091 869 66.40 

Pure oak 04°14'30.34'' 42°53'40.25'' 1188 15 19.71 17.59 0.060 1468 44.00 

Mixed 04°14'31.66'' 42°53'31.48'' 1188 15 23.82 18.05 0.086 1238 55.10 

Burgos 

Rio 1 

Pure pine 03° 47'19.19'' 43° 2' 55.17 '' 810 22 28.01 15.27 0.062 1102 66.17 

Pure oak 03° 47'21.36'' 43° 2' 51.61'' 760 34 18.36 14.6 0.058 1461 47.65 

Mixed 03° 47'19.26'' 43° 2' 52.64'' 785 28 23.47 16.09 0.089 1203 52.65 

Rio 2 

Pure pine 03° 47'17.64'' 43° 2' 54.10 '' 815 20 27.58 14.11 0.090 847 64.00 

Pure oak 03° 47'24.34'' 43° 2' 58.39 '' 765 35 21.53 15.62 0.058 1433 41.96 

Mixed 03° 47'23.23'' 43° 2' 55.84 '' 780 24 22.85 16.18 0.086 1203 54.95 

N, number of stems per hectare including all trees within the said plot; Long, longitude; Lat, latitude; DBH, diameter at breast height in 

centimeters; H, height in meters; Alt, altitude; Bravo and Rio are the names triplet in the different sites.
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3.2. Measurements and data collection 

Date of survey for the stands in Palencia and Burgos were 20th September 2017 and 12th April 

2018 respectively. First of all, the stand variables including the DBH (cm), total height (m), height 

of the crown base(m), crown width (m) and tree position were measured Secondly, thinning were 

carried out only in the Burgos site during the spring of 2018 and during the thinning operations 

biomass data was collected for some trees. Unfortunately, thinning in the Palencia site was not 

carried out due to problems between the Forest Service and the forest enterprise; therefore, 

above-ground biomass estimation was performed only on Burgos site. In a nutshell, the work was 

divided into two parts. The first part comprises of using the data from both sites to develop height-

diameter allometry equations for monospecific and mixed stands. The second part consists of 

using the available biomass data from Burgos site to develop above-ground estimations. Firstly, 

we sampled all the DBH of the trees and measured tree heights within the 4 triplets containing 12 

plots. Only height and diameter measurements are needed to build and compare the allometry 

relationship for both species. Secondly, at the Burgos site, 8 trees per species per plot were 

selected in the monospecific and mixed stands. Thus, the total number of trees sampled was 32 

trees. The trees were selected upon the criteria listed: (a) trees were selected along the diameter 

range found in each stand; (b) suppressed trees or trees that shows signs of affected disease or 

structural integrity were refrained in all the stands; (c) in the mixed forest, sampled trees must be 

in different species competition conditions in order to test the inter-specific competition settings). 

Trees were cut and different biomass components were accounted: stem with bark, thick 

branches, thin branches and foliage (Montero, Ruiz-Peinado, & Muñoz, 2005); (Ruiz-Peinado, del 

Rio, & Montero, 2011),(Ruiz-Peinado et al., 2012). Crown biomass components were totally 

stripped from the trunk after chopping of each tree sample. The foliage biomass was stripped from 

the branches according to the sizes of the tree sample. Crown length (CL) was calculated as the 

difference between total tree height (Ht; m) and height to the base of the crown (HBC; m), crown 

radii (CR; m) was also calculated based on the Crown length (CL) divided by total tree height (Ht; 

m). The fresh biomass of each component was measured in the field using an electronic scale and 

a representative subset sample of each of them was collected and in laboratory was dried at 102 

°C to constant mass. The dried biomass portion of other components (stem, thick branches, thin 

branches and foliage) was finally calculated. In order to obtain the biomass for each tree sample 

compartment (including stem, thick branches, thin branches and foliage).  
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The moisture content was calculated: Total dry weight (kg) = Total fresh weight × (Sample dry 

weight/ Sample fresh weight). As it is not possible to weigh the stem, its diameter was recorded at 

1m intervals to obtain the volumes using Smalian’s formula. Wood density was used to calculate 

stem dry biomass weight (Gutiérrez & Plaza, 1967). Dry biomass data was used for comparing 

species growing in monospecific stands and mixed stands.  

 

 

 

Furthermore, the summary statistics of the harvested tree data in Burgos study area for the 

estimation of total aboveground biomass and its components are given in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Foliage: needles or leaves; 

Thin branches: small part of the 

branches with a diameter lower than 7 cm; 

Thick branches: diameter greater than 7 

cm; 

Stem: the huge part of the tree which is 

the commercial volume to a top diameter of 

7cm. 

Figure 2: Classification of aboveground component biomass 
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Table 10: Summary statistics of the harvested tree data used in Burgos study area 

   

Pine   

  Pure    Mixed  
Variable Minimum Mean Maximum SD Minimum Mean Maximum SD 

Stem (kg) 71.05 175.27 304.12 80.54 72.30 176.30 374.90 97.38 

Foliage (kg) 3.13 6.55 11.10 2.67 0.70 4.01 11.58 3.57 

Thin Branch (kg) 7.54 15.78 26.75 6.42 1.33 7.62 22.00 6.79 

Thick Branch 
(kg) 

3.41 23.78 50.48 18.24 4.52 19.22 39.70 13.34 

Total (kg) 85.37 221.39 384.59 105.71 78.85 207.12 448.17 117.49 

DBH (cm) 17.25 24.65 31.80 5.30 17.15 24.19 33.30 4.94 

Total height (m) 14.9 15.86 17.00 0.79 14.95 17.62 21.60 2.30 

Oak   

  Pure    Mixed  
Stem (kg) 15.42 110.06 277.44 84.66 14.06 92.31 222.27 71.09 

Foliage (kg) 0.23 1.41 3.84 1.31 0.32 1.17 2.69 0.92 

Thin Branch (kg) 0.49 3.01 2218.00 2.80 0.81 2.97 6.84 2.35 

Thick Branch 
(kg) 

5.05 14.74 36.76 10.90 7.78 20.76 43.86 13.49 

Total (kg) 24.10 129.22 326.26 98.97 22.96 117.21 275.66 86.33 

DBH (cm) 8.05 14.14 22.00 4.60 8.30 13.83 20.85 4.18 

Total height (m) 11.30 15.38 18.60 2.46 11.40 15.60 18.55 2.06 

DBH: diameter at breast height (1.3m); SD: standard deviation 

 

3.3. Data analysis 

3.3.1. Allometry analysis 

3.3.1.1. Height to diameter equation 

There are several studies that explain height and diameter relationships for different species and 

areas but limited information on height-diameter models (Batista et al., 2001). However, in this 

study, we fit height-diameter models for monospecific and mixed forests in Scots pine and sessile 

oak. We tested the performance of 4 (four) height-diameter models (Table 3) and we were able to 

select the best model using the standard error of residuals of the model. However, the overall best 

model(s) was fitted for the best site-specific height diameter model using the functions “Nonlinear 

Least Squares”. Then we can compare the pooled models selected for monospecific and mixed 

stands for the 2 species. 
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Table 11: Height-diameter models selected for performance test 

No Reference Model 

1 Power equation H =  a·Db 

2 Meyer equation H = a·(1 - exp(-bD)) 

3 Korf curve H = a·exp(-bD^-c) 

4 Naslunds equation H = 1.3+D²/ (a + bD)² 

Note: H = total tree height (m); D = DBH (cm); a, b and c are parameters to be estimated;  

exp = the base of natural Inarithm. 

 

Figure 3: Data and fitted Korf curve model (model no.3) for the different plots in the triplets. 
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3.3.2. Biomass equation 

Beforehand, the dependent and covariate variables were firstly transformed to its natural logarithm 

in order to observe some statistics assumptions and be fitted as linear models. 

• In(AGB), natural logarithm of aboveground biomass (AGB); 

• In(ST), natural logarithm of stem biomass (ST); 

• In(TKB), natural logarithm of thick branch (TKB); 

• In(TNB), natural logarithm of thin branch (TNB); 

• In(FL), natural logarithm of foliage biomass (FL);  

• In(Ht), natural logarithm of height (Ht); 

• In(DBH), natural logarithm of diameter at breast height (DBH); 

However, In(DBH) and In(Ht) in the same model developed as independent variables showed low 

collinearity because the variance inflation factor VIF was less than 5 (VIF = 3.15). 

3.3.2.1. Selection of predictors 

The dependent or response variable in the regression models was total aboveground biomass and 

the independent (co-variant) variables were DBH (diameter at breast height or 1.3 m above the 

ground, cm), Ht (total height, m), combinations of both, crown diameter, crown ratio, and crown 

base height. However, all the variables were transformed to its logarithmic form before analyzing. 

The model selection criteria for the independent variables was based on Akaike information 

criterion (AIC) and Adjusted coefficient of determination (R²) as statistics and behavior of the 

models from graphical examination.  

 

3.3.2.2. Biomass allometry of monospecific and mixed stands 

In this study, several relations were analyzed to show if there are difference within the 

monospecific and mixed stands in terms of height-DBH, height-crown base height and height-

crown length. The testing of multicollinearity was performed to check that the different variables do 

not have similar predictive relationship without compromising the accuracy of the model. 

Moreover, analysis of covariance (ANCOVA) was used to determine mixture effect on tree 

allometry. Monospecific and mixed stands differences were separated by Tukey’s honestly 

significant difference (HSD) post hoc tests at a significance level of P < 0.05 Therefore, the 

dependent variables are In(AGB), In(ST), In(TKB), In(TNB) and finally In(FL). All the assumptions 

of ANCOVA (including normality, homogeneity of variance, homogeneity of regression slopes, 
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independence, and linearity) were checked. 

 

3.3.2.3. Estimation of total aboveground biomass 

Generally, DBH is used in the prediction of aboveground biomass, but combining height and DBH 

really improves the accuracy of the models (Ruiz-Peinado et al., 2011); Poudel & Temesgen, 

2016b). However, graphical exploratory analyses on the relationship between DBH, crown base 

height, total height, crown length and the dependent variables are needed to better understand the 

trend of the data. Eight allometric equations (including simple linear, non-linear and mixed effects 

models) were tested (Table 4). The data for this study was from 2 triplets within 6 plots, thus 

analysis of the dataset is accurately done by separating variance due to the plots and triplets using 

a mixed effect model, From Table 1, the non-linear mixed model for the equation no.5 was 

selected as the best model for predicting total aboveground biomass using DBH and total height 

for Scots pine  and sessile oak. The selection of the final model was based on the parameter 

significance, regression coefficients and Akaike information criterion (AIC).  

 

Table 12: Biomass models tested for total aboveground biomass for both species 

No Type Model 

1 Linear AGB=b1*DBH*Ht 

2 Linear AGB =b1*DBH 

3 Logarithmic In(AGB) =b1*In(DBH*Ht) 

4 Mixed model AGB=b1*(DBH*Ht) 

5 Mixed model In(AGB) =b1*In(DBH)+ b2*In(Ht) 

6 Mixed model In(AGB)=b1*In(DBH*Ht) 

7 Mixed model In(AGB) =b1*In(DBH*Ht)+b2*In(DBH*Ht)2*Ht 

8 Mixed model In(AGB) =b1*In(DBH*Ht)+b2*In(DBH*Ht)2+b3(DBH*Ht)3 

Note: AGB - biomass component (kg); DBH-diameter at breast height (cm); Ht-total height (m); b1, 

b2 and b3 - model parameters. 

 

3.3.2.4. Estimation of component biomass 

For the different tree components, similar equations used in predicting total tree biomass was 

used in modelling of the biomass. However, Dirichlet regression was used as it observes the 

additivity. The actual amount of component biomass was obtained by the product of predicted total 

biomass obtained from model no.5 and predicted proportion of component biomass. Fourteen 

linear models were used in this study for predicting the biomass in different tree components using 

Dirichlet regression. Furthermore, Dirichlet regression is much essential with the condition that the 

component proportion makes a total of 1. It is usually used in modelling of component biomass in 

Forestry.  
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3.3.2.5. Evaluation  

The performances of the biomass methods were evaluated depending on bias, bias percent, root 

mean square error and RMSE percent.  

  

 

where n is the number of trees, yi and yˆi are observed and predicted values of AGB or its 

component, and Y is the mean AGB or component biomass. 

 

4. RESULTS  

4.1. Stand characteristics 

4.1.1. Height and diameter a breast height equation 

The full data from both triplet experimental (Palencia -Bravo- and Burgos -Rio) the North of 

Palencia and the North of Burgos sites were used to build the H-DBH relationship and determine if 

there are some differences in the monospecific and mixed stands. For the pooled data set of non-

linear models (Table 5), Korf Curve was the most appropriate model form selected among the four 

alternatives because it has the lowest rate of error in terms of residual for predicting height to 

diameter. Based on these results, The Korf’s curve height-diameter models performed better than 

other models and all parameters of the best fit models were significant (p ≤ 0.005). However, we 

can observe from (Table 5) that the parameter estimates values (a and b) are very similar in all the 

plots for sessile oak (monospecific and mixed), thus sessile oak parameters in monospecific and 

mixed stands are the same. On the other hand, mixed stands were superior to monospecific stands 

for Scots pine forests. From anova analysis, the height-diameter relationship was slightly different 

from mixed and monospecific stands for pine species. (Table 5) shows the fit statistics for both 

monospecific and mixed stands of Scots pine and sessile oak. 
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Table 13: Parameter estimates of estimate for equation [3] in Table 3 

Triplet Species Trees (n) a b 

Bravo_1 

Pure pine 74 18.9899 (0.7898) 4.0496 (1.0059) 

Pure oak 114 28.2138 (0.9475) 11.1252 (0.5990) 

Mixed_Pine 51 23.4640 (1.4050) 8.7050 (1.5870) 

Mixed_Oak 65 21.0698 (0.7904) 6.2428 (0.7048) 

 
    

Bravo_2 

Pure pine 91 19.8520 (0.6222) 4.4045 (0.7814) 

Pure oak 100 23.9004 (0.7168) 6.8575 (0.5430) 

Mixed_Pine 58 21.7351 (0.8509) 6.7246 (1.0389) 

Mixed_Oak 68 23.4870 (1.1290) 6.8330 (0.9540) 

 
    

Rio_1 

Pure pine 29 17.6436 (0.9087) 6.1607 (1.3455) 

Pure oak 30 18.4220 (1.6320) 5.6020 (1.5300) 

Mixed_Pine 29 20.7270 (1.1170) 7.2470 (1.1660) 

Mixed_Oak 30 19.5780 (1.6680) 6.1070 (1.4870) 
     

Rio_2 

Pure pine 27 14.3360 (1.9810) 2.9650 (3.5990) 

Pure oak 30 17.8870 (1.3030) 4.3800 (1.4140) 

Mixed_Pine 30 19.7270 (1.7580) 5.8380 (2.8130) 

Mixed_Oak 29 17.5030 (1.2890) 3.7700 (1.3800) 

*All estimated parameters were significantly different from 0 (meaning P<0.005). 

4.2. Biomass analysis 

 

4.2.1. Variables selection for Aboveground Biomass Estimations 

Forward selection of the stepwise regression was performed on the different stands to determine 

the parameters that best describe total aboveground biomass. However, the total aboveground 

biomass was highly correlated with diameter at breast height (DBH) and total height (Ht) for pure 

pine (R2 >0.98), mixed pine (R2 >0.95) and pure oak (R2 >0.99) except for mixed oak whose total 

aboveground biomass was greatly dependent only on diameter at breast height (DBH) with (R2 

>0.98).   

4.2.2. Relationship between independent variables for monospecific and mixed stands 

It is important to check out and analyse the relationships between the independent variables (total 

height, diameter at breast height, crown base height and crown length) to help in the interpretation 

of the biomass allometric differences in monospecific and mixed stands. However, the relationship 
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between height and DBH were similar for monospecific and mixed sessile oak stands. There was a 

difference between the monospecific and mixed Scots pine, but the difference was not significant. 

Also, the relationship between Height and Crown base height for both stands were unsimilar 

likewise height and Crown length relationship.  

 

  

Figure 4: The relationships among independent variables for monospecific and mixed stand trees.  

 

4.2.3. Differences in biomass allometry of monospecific and mixed stands 

The determination of the differences in monospecific and mixed stands for pine and oak species 

was evaluated using In(DBH) as covariate. Analysis of covariance, ANCOVA showed no statistical 

significant differences for the total aboveground biomass, thick branches, and stem in monospecific 

and mixed Scots pine stand. Thin branches were moderately significant (p = 0.00186 > 0.01) and 

the foliage was slightly significant (p = 0.01252 > 0.05). Moreover, there was no difference in total 

biomass, stem, thin branches, and foliage for both monospecific and mixed oak. Nevertheless, 

In(TKB), In(ST) predicted by In(DBH )were slightly significant (p =0.0399 > 0.05). Although, 

ANCOVA results indicate that intercept values of monospecific and pure stands were significantly 

different for all biomass components. 

 

http://en.wikipedia.org/wiki/Anova
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Figure 5: Differences in allometry of monospecific and mixed stand trees 

4.2.4. Estimation of biomass component proportions using Dirichlet method 

The greater part of the aboveground biomass was found to be in the stem component for Scots 

pine and sessile oak. The mean biomass proportion of stem with respect to the total above ground 

biomass (AGB) was 81.8%, whereas thin branch 5.5%, thick branch was 9.6% and foliage was 

3.1% in Scots pine. Mean biomass proportion of stem in sessile oak was 78.0%, whereas thin 

branch and thick branch was 6.8% and 11.1% respectively. The foliage marked 4.1% of the total 

aboveground in sessile oak. Therefore, foliage was the component that accounted for the smallest 

proportion in both species. Moreover, to predict the total biomass and proportion biomass, 

regression procedure was applied, although total biomass and its proportion of various biomass 

components depend on the species type. For Scots pine, the stem biomass proportion decreases 

slightly when DBH increases whereas the thick branches, thin branches and foliage increase 

slightly. On the other hand, the proportion of stem biomass increases for sessile oak and the other 

component like thick branches, thin branches and foliage decreases slightly (Figure 5).   
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Figure 6: The trend in component biomass proportion with respect with to DBH 

 

4.2.5. Estimation of total aboveground biomass  

There is no need to estimate the proportion of different components of biomass from the estimation 

of the total above-ground biomass as using Dirichlet regression we obtain them directly. Usually the 

predicted total aboveground biomass facilitates future applications. Non-linear model mixed model 

fitted by maximum likelihood relating total aboveground biomass with DBH and height (Equation 5) 

was the best model for both Scots pine and sessile oak. Parameter estimates, standard errors, and 

Iog likelihood of this model for both species are shown in (Table 6) 

Table 14: Parameter estimates and their standard errors for the In-Iikelihood model to estimate 
total aboveground biomass in Scots pine and sessile oak trees. 

Species 
Parameter Estimates (S.E) 

In-likelihood 
a b c 

Scots pine 0.019 (-0.014) 2.288 (0.171) 0.686 (0.307) -69.973 

Sessile oak 0.052 (0.029) 2.363 (0.118) 0.500 (0.281) -53.933 

 

(3)   In (AGB) = a + b * In (DBH) + c * In (Ht) + e                                                

The independent variables were transformed into Logarithmic form because they provided better fit 

as compared to models in the original form. For Dirichlet regression, the different component 

proportions are fitted simultaneously, because it ensures that the predicted proportions sum up to 1. 

The amount of variation explained in Dirichlet regression was high for both species. However, the 
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statistical evaluation produced by Dirichlet regression are presented in Table 6. The component 

models were generally as good as the model to fit the total aboveground biomass. The model 

predicted a higher R2 for the different component of biomass. Although, the least R2 for Scots pine 

was 0.72 in the thin branch and the lowest R2 for sessile oak was 0.69 for the thin branches as well. 

(Table 7) indicates clearly that stem biomass proportion for Scots pine was the highest with 

R2=0.88 but stem biomass proportion had an R²=0.81 which was the highest in sessile oak.   

Table 15: Parameter estimates and the standard errors for the component biomass models using 
the Dirichlet regression where Scots pine includes DBH (cm)  tree (Ht, m) and sessile oak includes 
only Ht (m). 

Model 
Parameter Estimates  

Intercept DBH Ht R² 

Scots pine 

Stem -30.13 0.10 2.05 0.76 

Thin branch -32.74 0.13 2.02 0.72 

Thick branch -31.74 0.16 1.94 0.88 

Foliage -33.48 0.12 2.04 0.86 

Sessile oak 

Stem -4.70 - 0.58 0.81 

Thin branch -7.00 - 0.57 0.69 

Thick branch -6.47 - 0.56 0.76 

Foliage -7.58 - 0.57 0.74 

 

For Scots pine, RMSEs for stem and thin branch biomass estimation was 3.63% and 15.59% 

respectively. Also, thick branch was 3.41% and that of foliage was 2.89% whiles the RMSEs for 

stem accounted for 7.53%, thin branch was 72.45, thick branch was 5.08% and lastly foliage was 

2.3% for sessile oak. Eventually, the stem biomass proportion of R² was the highest, it also had the 

lowest RMSE percent for sessile oak.  

 

 

 

 

 

 



 

 

 
 
Eric Cudjoe 
Master Erasmus Mundus in Mediterranean Forestry and Natural Resources Management (MEDfOR)  

 

28 

Table 16: Evaluation statistics (root mean square error (RMSE), RMSE percent, bias and bias 
percent) in component biomass estimation in Scot pine and sessile oak trees using Dirichlet 
regression. 

Component RMSE (kg)  RMSE percentage Bias (kg) Bias percent 

Scots pine 

Stem 6.38 3.63 0.21 0.12 

Thin branch 4.17 15.59 -3.16 -11.82 

Thick branch 3.41 15.84 -1.49 -6.91 

Foliage 2.89 54.67 -5.43 -102.82 

Total 16.84 7.86 -9.87 -4.61 

Sessile oak 

Stem 7.62 7.53 0.05 0.05 

Thin branch 2.17 72.45 -7.33 -245.17 

Thick branch 5.08 28.60 -0.69 -3.88 

Foliage 2.30 178.01 -16.34 -1266.82 

Total 17.16 13.93 -24.31 -19.73 

 

  

5. DISCUSSION 

 

The relationship between H and DBH affects strongly the stem biomass allometry. This is because 

greater height leads to greater stem biomass for the same DBH. Results demonstrated similar 

patterns of H-DBH relationship for sessile oak in both monospecific and mixed stands. This findings 

are consistent with other research work on tree allometry (Pretzsch, 2014); Drössler et al., 2015; 

Dutca et al., 2017). However, the patterns of H-DBH relationship for Scots pine is different in mixed 

and monospecific stands. We could also observe that the crown base height for both species was 

higher in mixed than monospecific stands though the crown length of Scots pine and sessile oak in 

mixture were smaller when compared to monospecific stands (Dieler & Pretzsch, 2013). This may 

be because the main interaction is greater lateral competition imposed by the other species (e.g. 

light) as suggested by (Pretzsch et al., 2010; Pretzsch, 2014). Also, this explains how mixed stands 

will be less vulnerable to fire since mixed stands showed a higher crown base height compared to 

monospecific stands. It will be difficult for the fire to reach the canopies of the tree, therefore, 

making mixed stands much more protective against wildfire. The general overview of the results for 

the component biomass demonstrated no significant differences in the biomass allometry for 

monospecific and mixed stands for Scots pine except for thin branches (ANCOVA, p=0.00186) 

which was moderately significant and foliage biomass (ANCOVA, p=0.01252) which was slightly 

significant. Sessile oak recorded no difference for total biomass, stem, thin branches and foliage in 

monospecific and mixed stands. However, the thick branches (ANCOVA, p=0.0399) were slightly 
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significant. The thin branches and needles were significant in mixed Scots pine due to its 

photosynthesis role played. Therefore, higher total yield in mixed stands with respect to 

monospecific stands. But thick branches been significant in mixed stands for sessile oak may 

basically mean lower horizontal competition. The proportion of stem biomass increased slightly with 

increasing DBH for sessile oak. Similar findings for brutian pine were reported by (De-miguel et al., 

2014) Eker et al., 2017). However, in the case for Scots pine is inversely related. Also, the rate of 

decrease for the stem biomass proportion was lower increasing DBH, in centimeter. It is very 

important to understand that when the proportion of one component increases, the proportion of the 

other components decrease as seen in (Figure 3). This could be that Scots pine allocates all its 

energy on the height rather than DBH because of the competition of light. This confirms with stand 

dynamics of light-demanding species. However, in the case of sessile oak, this might be that the 

vertical competition influences the crown biomass as age increases.  

Most of the aboveground biomass was found allocated in the stem for both species. The mean 

biomass proportion of stem with respect to the total above ground biomass (AGB) was 81.8%, 

whereas thin branch 5.5%, thick branch was also 9.6% and foliage was 3.1% in Scots pine. Mean 

biomass proportion of stem in sessile oak was 78.0%, whereas thin branch and thick branch was 

6.8% and 11.1% respectively. The foliage marked 4.1% of the total aboveground in Sessile oak. 

Therefore, foliage was the component that accounted for the smallest proportion in both species. 

Moreover, to predict the total biomass and proportion biomass, regression procedure was applied, 

although total biomass and its proportion of various biomass components depend on the species 

type. The proportion of stem to total biomass was again similar in monospecific and mixed stands 

for both species. Knowing the biomass percentages in the different components is very important to 

determine which portion of the tree can provide what amount of biomass for different purposes. 

Dirichlet regression (Poudel & Temesgen, 2016a)was used in the estimation of the proportion of 

component biomass. One desired property in the component biomass estimation is the property of 

additivity, which can be attained by simultaneous fitting of component proportions in the Dirichlet 

regression (Poudel & Temesgen, 2016a).  

Generally, biomass allometric models are often developed using dataset from either monospecific 

or mixed stands. However, these models are used disregarding whether trees grow in monospecific 

or mixed stands. Results from biomass allometric models predicting total aboveground biomass 

were not significantly different in monospecific and mixed stands for Scots pine and Sessile oak. 

The parameter estimates and its standard errors for the non-linear mixed effects model which was 

used in predicting the total aboveground biomass in (Table 5) explains that the relationship 

between total aboveground biomass. The aboveground biomass was completely correlated with the 

predictor variables including DBH and total height. However, stem, thin and thick branches, foliage 
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biomass were found to be similar for both monospecific and mixed stands using DBH and total 

height. Biomass equations are very useful to predict total biomass and by compartment so end-user 

can assess different potential uses as energy production, board industry. In this research work, new 

set of biomass estimation models for Scots pine and Sessile oak mixed stand. This is the first time 

such an equation has been built using Dirichlet regression. Most recent research work have use 

Dirichlet regression because of its superiority over other normal multivariate statistical methods 

(Dahlhausen et al., 2017). The results also confirms that Dirichlet regression is one of best  

methods, especially when tree biomass component has similar independent variables (Hijazi & 

Jernigan, 2009). Therefore, Dirichlet regression is applicable for the biomass estimation since the 

different tree biomass compartment is influenced by DBH and total height. As to our knowledge it is 

the first-time biomass equations for pure and mixed stands in sessile oak-Scots pine forests are 

been assessed. Our research chose DBH and total height as predictors for total biomass except for 

mixed oak where DBH was the only predictor. Other independent variables like crown ratio, crown 

length and crown base height were tested for total biomass, but they were not significant. There 

was no difference in the total biomass allometry of monospecific and mixed stands for both species. 

This is mainly due to the similarity in the stem component which contributes to majority of the total 

biomass. Stem biomass allometry was found to be similar for monospecific and mixed stands for 

Scots pine and sessile oak when using DBH as predictors. As previously found by  (Larreta et al., 

2017) regarding a very strong relationship between biomass components and total height was 

determined for oak species, and total height was a significant predictor of all tree biomass 

components and aboveground biomass for Scots pine species. it is therefore possible to use the 

biomass equation systems developed for a specific species across different sites in the temperate 

forests. In all species, most of the biomass was allocated in stem biomass, followed by branches 

(thick and thin branches), and foliage. The biomass allocation differed between tree components 

and among species; however, it is necessary to investigate on factors affect the allocation patterns. 

The proposed species-specific biomass equations can be applied to tree-level data in forest 

inventories and may also improve the quality of biomass estimates and verify changes in carbon 

stocks in the temperate forests in the study area. This research should be viewed as part of an 

ongoing process, and further sampling is required to provide data for a wider range of species with 

potentially different growth forms and biomass allocation patterns in order to improve our ability to 

estimate aboveground biomass and carbon for these forests. The method of predicting the biomass 

proportions were unbiased even though we had limited dataset, it should be tested on a larger 

sample size.   
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6. CONCLUSION 

 

The models developed for component biomass estimation from monospecific and mixed stands 

satisfy the additivity property. Thus, helping in the estimation of biomass for Scots pine and sessile 

oak. Higher accuracy of the model was obtained by incorporating total height to the model mainly 

for Scots pine. All the findings for Scots pine and sessile oak of the master’s research work 

demonstrate that species composition has no significant effect on tree biomass allometry, at least 

for this phase of development and mixing proportions. The covariate relationships, and the 

proportion of biomass component are similar in monospecific and mixed stands for both species. 

Tree height has a strong influence on the estimate of aboveground biomass made by allometric 

models. To improve biomass estimation, the development of generalized height-diameter models 

that estimate tree height using a subset of randomly sampled trees presents an approach to 

supplement surveys where only diameters have been measured. Using Dirichlet regression to fit 

the models, lead to accurate addictive biomass equations for monospecific and mixed stands for 

the two species. These biomass equations for mixed stands could help in accounting for carbon 

estimation and mitigation against climate change. This study presents the first mixed species 

allometric equations precisely in Spain. The best model explained, more than 65% of the variation 

in measured aboveground biomass. It produced the lowest AIC, bias and narrow ranges of errors. 

This confirms that our model is strong and accurately estimates aboveground biomass. 

Furthermore, the model has potential for application in other regions, species composition and site 

characters are almost the same as our study area. Species-specific biomass allocation and 

allometric equations should be used in other to acquire best estimations, however, when that is not 

available then we can opt for general biomass allocation and allometric equations. It is hereby 

recommended that the application of mixed biomass models is transposed to tree biomass in 

monospecific and vice versa. Future interesting work would be to address the topic of leaf area, 

canopy biomass partitioning and tree distribution pattern under changing environment conditions. 

Particularly, biomass modelling for mixed stands for Scots pine and sessile oak should also focus 

on relating forest variables like tree biomass and volume. 
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ANNEX 

 

1. R scripts 

 

3.1. Dirichlet regression 
  
 
#############################################################################
###### # # 
# Dirichelet regression modelling program for estimate biomass proportion for both species # 
#############################################################################
###### 
 

## SCRIPT for DIRICHLET REGRESSION  

# Dirichelet regression modelling program to estimate biomass proportion 

## RESULTS FROM THIS FITTING ARE PERCENTAGE PARAMETERS FOR THE DIFFERENT 

BIOMASS COMPONENTS 

## THEY SHOULD BE APPLIED TO TOTAL BIOMASS ESTIMATIONS  

# Clean behind run history  

rm(list=ls())  
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# Load working directory  

setwd("C:/MEDfOR_Spain/MScThesis_MEDFOR_UVa/Data/First_Work_INIA/Eric 

Cudjoe_Palencia")  

# Read data  

datos<-read.csv2('Thesis_Work_2.csv', sep=',',dec='.',header=T, na.string='NA') 

## Selection of required data 

# Selection of required data   

## PINE DATA IN THIS CASE   --> change to oak data for the oak biomass models 

datos_dirichlet<-subset(datos,datos$Variables=="Mixed pine"|datos$Variables=="Pure pine") 

# Pine biomass data: total biomass, Stem biomass, branch biomass, needle biomass 

# Install packages 

packs<-c('Formula', 'rgl', 'DirichletReg', 'colorspace') 

sapply(packs,require,character.only=TRUE) 

# Introduce mean of biomass (dependent) variable by biomasstotal (to calculate precision 

parameter) 

datos_dirichlet$Stemp=with(datos_dirichlet,(Stem/Totalbiomass)) 

datos_dirichlet$Branches_1_1p=with(datos_dirichlet,(Branches_1/Totalbiomass)) 

datos_dirichlet$Branches_2_1p=with(datos_dirichlet,(Branches_2/Totalbiomass)) 

datos_dirichlet$Needlesp=with(datos_dirichlet,(Needles/Totalbiomass)) 

head(datos_dirichlet) 

# Make format data for Dirichlet's Regression 

# This function prepares a matrix with compositional variables for further processing  #12:15 values 

to transform 

AL <- DR_data(datos_dirichlet[, 12:15],trafo=TRUE) 

AL 

print(AL,type=c("processed")) 

attr(AL,"Y.original") 

attr(AL,"transformed") 

attr(AL,"normalized") 
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attr(AL,"valid_obs") 

attr(AL,"obs") 

attr(AL,"dim.names") 

# Some figures for biomass percentages 

plot(AL, main ='Biomass percentage', cex=.16,a2d=list(colored=TRUE, c.grid=TRUE,trafo=TRUE)) 

######## OR  ################# 

plot(AL, cex = 0.16, a2d = list(colored = FALSE, c.grid = FALSE)) 

plot(rep(datos_dirichlet$DBH,4), as.numeric(AL), ylim=0:1, pch=21, 

     bg=rep(c("red","blue","green","black"), each=16), 

     xlab="DBH (cm)", ylab="Biomass proportion") 

legend("topleft", legend = c("Stem", "Thin Branch", "Thick Branch", "Foliage"), lwd = 2, col = 

c("red","blue","green","black"),  

       pt.bg = c("red","blue","green","black"), pch = 21, bty = "n") 

# Make format data for Dirichilet's Regression 

# Null model   (only intercept) 

model1<- DirichReg(AL ~ 1, datos_dirichlet) 

model1 

coef(model1) 

summary(model1) 

anova(model1) 

# Different combination with DBH and Ht_m for fitting commom models 

model2 <- DirichReg(AL ~ DBH,datos_dirichlet) 

coef(model2) 

summary(model2) 

predict(model2, newdata = data.frame("DBH" = seq(10, 100, 1000))) 

residuals(model2,type=c('standardized')) 

anova(model2) 

model3 <- DirichReg(AL ~ DBH+(Ht_m), datos_dirichlet) 
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coef(model3) 

summary(model3)  

anova(model3) 

residuals(model3,type=c('standardized')) 

anova(model3 

model4<- DirichReg(AL ~ (DBH)+I((DBH)^2), datos_dirichlet) 

summary(model4)  

anova(model4) 

model5<- DirichReg(AL ~  I(DBH^2)+Ht_m, datos_dirichlet) 

summary(model5)   

anova(model5) 

model6<- DirichReg(AL ~ DBH^2+Ht_m^2, datos_dirichlet) 

coef(model6) 

summary(model6) 

predict(model6,newdata=data.frame("DBH"=seq(10,10,1000), "Ht_m"=seq(10,10,100)) 

residuals(model6,type=c('standardized')) 

anova(model6) 

model7<- DirichReg(AL ~ I((DBH+Ht_m)^2), datos_dirichlet) 

summary(model7) 

anova(model7) 

model8<- DirichReg(AL ~ I((DBH)^2), datos_dirichlet) 

summary(model8) 

anova(model8) 

model9 <- DirichReg(AL ~ DBH+I((DBH)^2), datos_dirichlet)  

coef(model9) 

summary(model9) 

anova(model9) 

model10 <- DirichReg(AL ~ (Ht_m)+I((Ht_m)^2), datos_dirichlet) 
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coef(model10) 

summary(model10) 

anova(model10) 

model11 <- DirichReg(AL ~ I(DBH*Ht_m), datos_dirichlet)  

summary(model11) 

anova(model11) 

model12 <- DirichReg(AL ~ I((DBH)^2*Ht_m), datos_dirichlet)  

summary(model12) 

anova(model12) 

# Fit quadratic Dirichlet regression models ("common") 

model13 <- DirichReg(AL ~ I(DBH+Ht_m) + I((DBH+Ht_m)^2), data = datos_dirichlet)  

summary(model13) 

anova(model13) 

model14 <- DirichReg(AL ~ I((DBH^2*Ht_m)) + I((DBH^2*Ht_m)), data = datos_dirichlet)  

summary(model14) 

anova(model14) 

model15 <- DirichReg(AL ~ I(DBH+Ht_m) + I((DBH^2*Ht_m^2)), data = datos_dirichlet)  

coef(model15) 

summary(model15) 

anova(model15) 

# Looking for the better model via parameter significance...   

###  You can also look for those better models and also those that showed the lower AIC value 

##   Caution!!!! In order to select the best model, if there are some models that showed problems 

(no convergence)  

##   the names of the models (model1, model2,.....) that appears in the next section are not the right 

number for 

##   the models that we have run previously. Models are presented with a continuous number.  
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anova(model1, model2, model3, model4, model5, model6, model7, model8, model9, model10, 

model11, model12, model13,  model14, model15) 

## Now, we can check the biological behaviour of the selected models 

## First example with two variables '(DBH)+(Ht_m)'  

## MODEL 3 

par(mar = c(4, 4, 4, 4) + 0.1) 

plot(rep(datos_dirichlet$DBH, 4), as.numeric(AL), pch = 21, bg = rep(c("red","blue","green","black"), 

                     each = 16), xlab = "DBH (cm)", ylab = "Proportion", ylim = 0:1, main = "Biomass 

proportion. Model 3") 

Xnew3 <- data.frame(DBH = seq(min(datos_dirichlet$DBH), max(datos_dirichlet$DBH),length.out = 

117),Ht_m=seq(min(datos_dirichlet$Ht_m), max(datos_dirichlet$Ht_m),length.out = 117)) 

for (i in 1:4) lines(cbind(Xnew3, predict(model3, Xnew3)[, i]), col = c("red","blue","green","black")[i], 

lwd = 2) 

legend("topleft", legend = c("Stem","Branches_1", "Branches_2", "Needles" ), lwd = 2, col = 

c("red","blue","green","black"),  

                     pt.bg = c("red","blue","green","black"), pch = 21, bty = "n") 

par(new=TRUE) 

plot(cbind(Xnew3, predict(model3, Xnew3, F, F, T)), lty = "24", type = "l", ylim = c(0, 

                             max(predict(model3, Xnew3, F, F, T))), axes = F, ann = F, lwd = 2) 

axis(4) 

mtext(expression(paste("Precision (", phi, ")", sep = "")), 4, line = 3) 

legend("top", legend = c(expression(hat(mu[c] == hat(alpha)[c]/hat(alpha)[0])), 

                        expression(hat(phi) == hat(alpha)[0])), lty = c(1, 2), lwd = c(3, 2), bty = "n") 

############·······######################### 

## TRY FOR MODEL 15 example with two variables '(DBH)+(Ht_m)'  

## MODEL 15 

par(mar = c(4, 4, 4, 4) + 0.1) 

plot(rep(datos_dirichlet$DBH, 4), as.numeric(AL), pch = 21, bg = rep(c("red","blue","green","black"), 

each = 16), xlab = "DBH (cm)", ylab = "Proportion", 

     ylim = 0:1, main = "Biomass proportion. Model 16") 
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Xnew16 <- data.frame(DBH = seq(min(datos_dirichlet$DBH), max(datos_dirichlet$DBH),length.out 

= 40),Ht_m=seq(min(datos_dirichlet$Ht_m), max(datos_dirichlet$Ht_m),length.out = 40)) 

for (i in 1:4) lines(cbind(Xnew16, predict(model16, Xnew16)[, i]), col = 

c("red","blue","green","black")[i], lwd = 2) 

legend("topleft", legend = c("Stem","Branches_1", "Branches_2", "Needles" ), lwd = 2, col = 

c("red","blue","green","black"), 

           pt.bg = c("red","blue","green","black"), pch = 21, bty = "n") 

par(new=TRUE) 

plot(cbind(Xnew16, predict(model16, Xnew16, F, F, T)), lty = "24", type = "l", ylim = c(0, 

                           max(predict(model16, Xnew16, F, F, T))), axes = F, ann = F, lwd = 2) 

axis(4) 

mtext(expression(paste("Precision (", phi, ")", sep = "")), 4, line = 3) 

legend("top", legend = c(expression(hat(mu[c] == hat(alpha)[c]/hat(alpha)[0])), 

                         expression(hat(phi) == hat(alpha)[0])), lty = c(1, 2), lwd = c(3, 2), bty = "n") 

################## 

## Example with two variables (DBH^2)+Ht_m  

#'MODEL 5' 

par(mar = c(4, 4, 4, 4) + 0.1) 

plot(rep(datos_dirichlet$DBH, 4), as.numeric(AL), pch = 21, bg = rep(c("red","blue","green","black"),  

                            each = 16), xlab = "DBH (cm)", ylab = "Proportion", ylim = 0:1, main = "Biomass 

proportion. Model 4") 

Xnew4 <- data.frame(DBH = seq(min(datos_dirichlet$DBH), max(datos_dirichlet$DBH),length.out = 

117)) 

for (i in 1:4) lines(cbind(Xnew4, predict(model4, Xnew4)[, i]), col = c("red","blue","green","black")[i], 

lwd = 2) 

legend("topleft", legend = c("Stem","Branches_1", "Branches_2", "Needles" ), lwd = 2, col = 

cc("red","blue","green","black"),  

       pt.bg = c("red","blue","green","black"), pch = 21, bty = "n") 

par(new=TRUE) 

plot(cbind(Xnew4, predict(model4, Xnew4, F, F, T)), lty = "24", type = "l", ylim = c(0, 

                           max(predict(model4, Xnew4, F, F, T))), axes = F, ann = F, lwd = 2) 
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axis(4) 

mtext(expression(paste("Precision (", phi, ")", sep = "")), 4, line = 3) 

legend("top", legend = c(expression(hat(mu[c] == hat(alpha)[c]/hat(alpha)[0])), 

                         expression(hat(phi) == hat(alpha)[0])), lty = c(1, 2), lwd = c(3, 2), bty = "n") 

## Figure. Model6 with variable  DBH^2 'MODEL6' 

par(mar = c(4, 4, 4, 4) + 0.1) 

plot(rep(datos_dirichlet$DBH, 4), as.numeric(AL), pch = 21, bg = rep(c("red","blue","green","black") 

            , each = 16), xlab = "DBH (cm)", ylab = "Proportion", ylim = 0:1, main = "Biomass proportion 

for Scots pine") 

Xnew6 <- data.frame(DBH = seq(min(datos_dirichlet$DBH), max(datos_dirichlet$DBH),length.out = 

117)) 

for (i in 1:3) lines(cbind(Xnew6, predict(model6, Xnew6)[, i]), col = c("red","blue","green","black")[i], 

lwd = 2) 

legend("topleft", legend = c( "Stem","Thin Branches", "Thick Branches", "Foliage"), lwd = 2, col = 

c("red","blue","green","black"), 

       pt.bg = c("red","blue","green","black"), pch = 21, bty = "n") 

par(new=TRUE) 

plot(cbind(Xnew3, predict(model6, Xnew6, F, F, T)), lty = "24", type = "l", ylim = c(0, 

                               max(predict(model6, Xnew6, F, F, T))), axes = F, ann = F, lwd = 2) 

axis(4) 

mtext(expression(paste("Precision (", phi, ")", sep = "")), 4, line = 3) 

legend("top", legend = c(expression(hat(mu[c] == hat(alpha)[c]/hat(alpha)[0])), 

                         expression(hat(phi) == hat(alpha)[0])), lty = c(1, 2), lwd = c(3, 2), bty = "n") 

################################################ 

## Figure. Model 10 with variable  DBH^2 # 

#'MODEL10' 

par(mar = c(4, 4, 4, 4) + 0.1) 

plot(rep(datos_dirichlet$DBH, 4), as.numeric(AL), pch = 21, bg = rep(c("red","blue","green", 

"black"), 
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                          each = 16), xlab = "DBH (cm)", ylab = "Proportion", ylim = 0:1, main = "Biomass 

proportion. Model 10") 

Xnew10 <- data.frame(DBH = seq(min(datos_dirichlet$DBH), max(datos_dirichlet$DBH),length.out 

= 117),Ht_m=seq(min(datos_dirichlet$Ht_m), max(datos_dirichlet$Ht_m),length.out = 117)) 

for (i in 1:3) lines(cbind(Xnew10, predict(model10, Xnew10)[, i]), col = 

c("red","blue","green","black")[i], lwd = 2) 

legend("topleft", legend = c("Stem","Branches_1", "Branches_2", "Needles" ), lwd = 2, col = 

c("red","blue","green","black"),  

                pt.bg = c("red","blue","green","black"), pch = 21, bty = "n") 

par(new=TRUE) 

plot(cbind(Xnew10, predict(model10, Xnew10, F, F, T)), lty = "24", type = "l", ylim = c(0, 

                                      max(predict(model10, Xnew10, F, F, T))), axes = F, ann = F, lwd = 2) 

axis(4) 

mtext(expression(paste("Precision (", phi, ")", sep = "")), 4, line = 3) 

legend("top", legend = c(expression(hat(mu[c] == hat(alpha)[c]/hat(alpha)[0])), 

                         expression(hat(phi) == hat(alpha)[0])), lty = c(1, 2), lwd = c(3, 2), bty = "n") 

################################################################ 

## Figure. Model 16 with variable  DBH^2 · 

#MODEL 16' 

par(mar = c(4, 4, 4, 4) + 0.1) 

plot(rep(datos_dirichlet$DBH, 4), as.numeric(AL), pch = 21, bg=rep(c("red","blue","green", "pink"), 

                       each = 16), xlab = "dbh (cm)", ylab = "Proportion", ylim = 0:1, main = "Biomass 

proportion. Model 16") 

Xnew16 <- data.frame(DBH = seq(min(datos_dirichlet$DBH), max(datos_dirichlet$DBH),length.out 

= 117)) 

for (i in 1:3) lines(cbind(Xnew16, predict(model16, Xnew16)[, i]), col = c("red","blue","green", 

"pink")[i], lwd = 2) 

legend("topleft", legend = c("Branches_1", "Branches_2", "Needles", "Stem"), lwd = 2, col = c("red", 

                                                  "blue", "green", "pink"), pt.bg = c("red", "blue", "green", "pink"), pch = 

21, bty = "n") 

par(new=TRUE) 
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plot(cbind(Xnew16, predict(model16, Xnew16, F, F, T)), lty = "24", type = "l", ylim = c(0, 

                                                max(predict(model16, Xnew16, F, F, T))), axes = F, ann = F, lwd = 2) 

axis(4) 

mtext(expression(paste("Precision (", phi, ")", sep = "")), 4, line = 3) 

legend("top", legend = c(expression(hat(mu[c] == hat(alpha)[c]/hat(alpha)[0])), 

                         expression(hat(phi) == hat(alpha)[0])), lty = c(1, 2), lwd = c(3, 2), bty = "n") 

## Statistic calculations and graphics 

#MODEL 3   -> Model 3: DirichReg(formula = AL ~ DBH + (Ht_m), data = datos_dirichlet) 

summary(model3) 

fitted(model3) 

predict(model3,newdata=data.frame("DBH"=seq(10,10,1000), "Ht_m"=seq(10,10,100))) 

residuals(model3,type=c('standardized')) 

confint(model3) 

confint(model3, exp = TRUE) 

logLik(model3) 

round(vcov(model3), 3) 

#Compute predicted(fitted) percentages of component biomass 

datos_dirichlet$Stempp_m3 <- (fitted(model3)[,"Stemp"]) 

datos_dirichlet$Branches_1pp_m3 <- (fitted(model3)[,"Branches_1_1p"]) 

datos_dirichlet$Branches_2pp_m3  <- (fitted(model3)[,"Branches_2_1p"]) 

datos_dirichlet$Needlespp_m3  <- (fitted(model3)[,"Needlesp"])  

#Compute predicted(fitted) of component biomass 

datos_dirichlet$pStem_m3  <- with(datos_dirichlet,(Stempp_m3 *Totalbiomass)) 

datos_dirichlet$pBranches_1_m3 <-with(datos_dirichlet,(Branches_1pp_m3 *Totalbiomass)) 

datos_dirichlet$pbranches_2_m3 <-with(datos_dirichlet,(Branches_2pp_m3 *Totalbiomass)) 

datos_dirichlet$pNeedles_m3 <-with(datos_dirichlet,(Needlespp_m3 *Totalbiomass)) 

datos_dirichlet$pbiomastotal_m3 <-with(datos_dirichlet,(pStem_m3 +pBranches_1_m3 

+pbranches_2_m3 +pNeedles_m3 )) 
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# Compute mean bias of component biomass  

# -<caution 16 is the number of observations (n) 

datos_dirichlet$Stembias_m3=with(datos_dirichlet,((100/16)*(Stem-pStem_m3)/Stem)) 

mean(datos_dirichlet$Stembias_m3) 

datos_dirichlet$Branches_1bias_m3=with(datos_dirichlet,((100/16)*(Branches_1-

pBranches_1_m3)/Branches_1)) 

mean(datos_dirichlet$Branches_1bias_m3) 

datos_dirichlet$Branches_2bias_m3=with(datos_dirichlet,((100/16)*(Branches_2-

pbranches_2_m3)/Branches_2)) 

mean(datos_dirichlet$Branches_2bias_m3) 

datos_dirichlet$Needlesbias_m3=with(datos_dirichlet,((100/16)*(Needles-pNeedles_m3)/Needles)) 

mean(datos_dirichlet$Needlesbias_m3) 

datos_dirichlet$totalbias_m3<-

with(datos_dirichlet,(Stembias_m3+Branches_1bias_m3+Branches_2bias_m3+Needlesbias_m3)) 

mean(datos_dirichlet$totalbias_m3) 

#Compute mean RMSE of component biomass 

datos_dirichlet$Stemrmse_m3<-with(datos_dirichlet,sqrt((Stem-pStem_m3)^2)/16) 

sum(datos_dirichlet$Stemrmse_m3) 

datos_dirichlet$Branches_1rmse_m3<-with(datos_dirichlet,sqrt((Branches_1-

pBranches_1_m3)^2)/16) 

sum(datos_dirichlet$Branches_1rmse_m3) 

datos_dirichlet$Branches_2rmse_m3<-with(datos_dirichlet,sqrt((Branches_2-

pbranches_2_m3)^2)/16) 

sum(datos_dirichlet$Branches_2rmse_m3) 

datos_dirichlet$Needlesrmse_m3<-with(datos_dirichlet,sqrt((Needles-pNeedles_m3)^2)/16) 

sum(datos_dirichlet$Needlesrmse_m3) 

datos_dirichlet$totalrmse_m3<-

with(datos_dirichlet,(Stemrmse_m3+Branches_1rmse_m3+Branches_2rmse_m3+Needlesrmse_m

3)) 

sum(datos_dirichlet$totalrmse_m3) 

### For model 5  -> Model 5: DirichReg(formula = AL ~ I(DBH^2) + Ht_m, data = datos_dirichlet) 
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### YOU SHULD CHANGE FOR MODEL 6,10, AND 15 from this point to the end. Repeat the 

previous stage but changing to the correct model 

summary(model5) 

fitted(model5) 

predict(model5,newdata=data.frame("DBH"=seq(10,10,1000), "Ht_m"=seq(10,10,100))) 

residuals(model5,type=c('standardized')) 

confint(model5) 

confint(model5, exp = TRUE) 

logLik(model5) 

round(vcov(model5), 3) 

#Compute predicted(fitted) percentages of component biomass 

datos_dirichlet$Stempp_m5 <- (fitted(model5)[,"Stemp"]) 

datos_dirichlet$Branches_1pp_m5 <- (fitted(model5)[,"Branches_1_1p"]) 

datos_dirichlet$Branches_2pp_m5  <- (fitted(model5)[,"Branches_2_1p"]) 

datos_dirichlet$Needlespp_m5  <- (fitted(model5)[,"Needlesp"])  

#Compute predicted(fitted) of component biomass 

datos_dirichlet$pStem_m5  <- with(datos_dirichlet,(Stempp_m5 *Totalbiomass)) 

datos_dirichlet$pBranches_1_m5 <-with(datos_dirichlet,(Branches_1pp_m5 *Totalbiomass)) 

datos_dirichlet$pbranches_2_m5 <-with(datos_dirichlet,(Branches_2pp_m5 *Totalbiomass)) 

datos_dirichlet$pNeedles_m5 <-with(datos_dirichlet,(Needlespp_m5 *Totalbiomass)) 

datos_dirichlet$pbiomastotal_m5 <-with(datos_dirichlet,(pStem_m5 +pBranches_1_m5 

+pbranches_2_m5 +pNeedles_m5 )) 

# Compute mean bias of component biomass  

# -<caution 16 is the number of observations (n) 

datos_dirichlet$Stembias_m5=with(datos_dirichlet,((100/16)*(Stem-pStem_m5)/Stem)) 

mean(datos_dirichlet$Stembias_m5) 

datos_dirichlet$Branches_1bias_m5=with(datos_dirichlet,((100/16)*(Branches_1-

pBranches_1_m5)/Branches_1)) 

mean(datos_dirichlet$Branches_1bias_m5) 
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datos_dirichlet$Branches_2bias_m5=with(datos_dirichlet,((100/16)*(Branches_2-

pbranches_2_m5)/Branches_2)) 

mean(datos_dirichlet$Branches_2bias_m5) 

datos_dirichlet$Needlesbias_m5=with(datos_dirichlet,((100/16)*(Needles-pNeedles_m5)/Needles)) 

mean(datos_dirichlet$Needlesbias_m5) 

datos_dirichlet$totalbias_m5<-

with(datos_dirichlet,(Stembias_m5+Branches_1bias_m5+Branches_2bias_m5+Needlesbias_m5)) 

mean(datos_dirichlet$totalbias_m5) 

#Compute mean RMSE of component biomass 

datos_dirichlet$Stemrmse_m5<-with(datos_dirichlet,sqrt((Stem-pStem_m5)^2)/16) 

sum(datos_dirichlet$Stemrmse_m5) 

datos_dirichlet$Branches_1rmse_m5<-with(datos_dirichlet,sqrt((Branches_1-

pBranches_1_m5)^2)/16) 

sum(datos_dirichlet$Branches_1rmse_m5) 

datos_dirichlet$Branches_2rmse_m5<-with(datos_dirichlet,sqrt((Branches_2-

pbranches_2_m5)^2)/16) 

sum(datos_dirichlet$Branches_2rmse_m5) 

datos_dirichlet$Needlesrmse_m5<-with(datos_dirichlet,sqrt((Needles-pNeedles_m5)^2)/16) 

sum(datos_dirichlet$Needlesrmse_m5) 

datos_dirichlet$totalrmse_m5<-

with(datos_dirichlet,(Stemrmse_m5+Branches_1rmse_m5+Branches_2rmse_m5+Needlesrmse_m

5)) 

sum(datos_dirichlet$totalrmse_m5) 

### For model 6 -> Model 6: DirichReg(formula = AL ~ I(DBH^2) + I(Ht_m^2), data = 

datos_dirichlet) 

## This model didnot converge in my script 

summary(model6) 

fitted(model6) 

predict(model6,newdata=data.frame("DBH"=seq(10,10,1000), "Ht_m"=seq(10,10,100))) 

residuals(model6,type=c('standardized')) 

confint(model6) 
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confint(model6, exp = TRUE) 

logLik(model6) 

round(vcov(model6), 3) 

#Compute predicted(fitted) percentages of component biomass 

datos_dirichlet$Stempp_m6 <- (fitted(model6)[,"Stemp"]) 

datos_dirichlet$Branches_1pp_m6 <- (fitted(model6)[,"Branches_1_1p"]) 

datos_dirichlet$Branches_2pp_m6  <- (fitted(model6)[,"Branches_2_1p"]) 

datos_dirichlet$Needlespp_m6  <- (fitted(model6)[,"Needlesp"])  

#Compute predicted(fitted) of component biomass 

datos_dirichlet$pStem_m6  <- with(datos_dirichlet,(Stempp_m6 *Totalbiomass)) 

datos_dirichlet$pBranches_1_m6 <-with(datos_dirichlet,(Branches_1pp_m6 *Totalbiomass)) 

datos_dirichlet$pbranches_2_m6 <-with(datos_dirichlet,(Branches_2pp_m6 *Totalbiomass)) 

datos_dirichlet$pNeedles_m6 <-with(datos_dirichlet,(Needlespp_m6 *Totalbiomass)) 

datos_dirichlet$pbiomastotal_m6 <-with(datos_dirichlet,(pStem_m6 +pBranches_1_m6 

+pbranches_2_m6 +pNeedles_m6 )) 

# Compute mean bias of componenet biomass  

#caution 16 is the number of observations (n) 

datos_dirichlet$Stembias_m6=with(datos_dirichlet,((100/16)*(Stem-pStem_m6)/Stem)) 

mean(datos_dirichlet$Stembias_m6) 

datos_dirichlet$Branches_1bias_m6=with(datos_dirichlet,((100/16)*(Branches_1-

pBranches_1_m6)/Branches_1)) 

mean(datos_dirichlet$Branches_1bias_m6) 

datos_dirichlet$Branches_2bias_m6=with(datos_dirichlet,((100/16)*(Branches_2-

pbranches_2_m6)/Branches_2)) 

mean(datos_dirichlet$Branches_2bias_m6) 

datos_dirichlet$Needlesbias_m6=with(datos_dirichlet,((100/16)*(Needles-pNeedles_m6)/Needles)) 

mean(datos_dirichlet$Needlesbias_m6) 

datos_dirichlet$totalbias_m6<-

with(datos_dirichlet,(Stembias_m6+Branches_1bias_m6+Branches_2bias_m6+Needlesbias_m6)) 
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mean(datos_dirichlet$totalbias_m6) 

#Compute mean RMSE of component biomass 

datos_dirichlet$Stemrmse_m6<-with(datos_dirichlet,sqrt((Stem-pStem_m6)^2)/16) 

sum(datos_dirichlet$Stemrmse_m6) 

datos_dirichlet$Branches_1rmse_m6<-with(datos_dirichlet,sqrt((Branches_1-

pBranches_1_m6)^2)/16) 

sum(datos_dirichlet$Branches_1rmse_m6) 

datos_dirichlet$Branches_2rmse_m6<-with(datos_dirichlet,sqrt((Branches_2-

pbranches_2_m6)^2)/16) 

sum(datos_dirichlet$Branches_2rmse_m6) 

datos_dirichlet$Needlesrmse_m6<-with(datos_dirichlet,sqrt((Needles-pNeedles_m6)^2)/16) 

sum(datos_dirichlet$Needlesrmse_m6) 

datos_dirichlet$totalrmse_m6<-

with(datos_dirichlet,(Stemrmse_m6+Branches_1rmse_m6+Branches_2rmse_m6+Needlesrmse_m

6)) 

sum(datos_dirichlet$totalrmse_m6) 

### For model 10  

summary(model10) 

fitted(model10) 

predict(model10,newdata=data.frame("DBH"=seq(10,10,1000), "Ht_m"=seq(10,10,100))) 

residuals(model10,type=c('standardized')) 

confint(model10) 

confint(model10, exp = TRUE) 

logLik(model10) 

round(vcov(model10), 3) 

#Compute predicted(fitted) percentages of component biomass 

datos_dirichlet$Stempp_m10 <- (fitted(model10)[,"Stemp"]) 

datos_dirichlet$Branches_1pp_m10 <- (fitted(model10)[,"Branches_1_1p"]) 

datos_dirichlet$Branches_2pp_m10  <- (fitted(model10)[,"Branches_2_1p"]) 
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datos_dirichlet$Needlespp_m10  <- (fitted(model10)[,"Needlesp"])  

#Compute predicted(fitted) of component biomass 

datos_dirichlet$pStem_m10  <- with(datos_dirichlet,(Stempp_m10 *Totalbiomass)) 

datos_dirichlet$pBranches_1_m10 <-with(datos_dirichlet,(Branches_1pp_m10 *Totalbiomass)) 

datos_dirichlet$pbranches_2_m10 <-with(datos_dirichlet,(Branches_2pp_m10 *Totalbiomass)) 

datos_dirichlet$pNeedles_m10 <-with(datos_dirichlet,(Needlespp_m10 *Totalbiomass)) 

datos_dirichlet$pbiomastotal_m10 <-with(datos_dirichlet,(pStem_m10 +pBranches_1_m10 

+pbranches_2_m10 +pNeedles_m10 )) 

# Compute mean bias of component biomass  

# -<caution 16 is the number of observations (n) 

datos_dirichlet$Stembias_m10=with(datos_dirichlet,((100/16)*(Stem-pStem_m10)/Stem)) 

mean(datos_dirichlet$Stembias_m10) 

datos_dirichlet$Branches_1bias_m10=with(datos_dirichlet,((100/16)*(Branches_1-

pBranches_1_m10)/Branches_1)) 

mean(datos_dirichlet$Branches_1bias_m10) 

datos_dirichlet$Branches_2bias_m10=with(datos_dirichlet,((100/16)*(Branches_2-

pbranches_2_m10)/Branches_2)) 

mean(datos_dirichlet$Branches_2bias_m10) 

datos_dirichlet$Needlesbias_m10=with(datos_dirichlet,((100/16)*(Needles-

pNeedles_m10)/Needles)) 

mean(datos_dirichlet$Needlesbias_m10) 

datos_dirichlet$totalbias_m10<-

with(datos_dirichlet,(Stembias_m10+Branches_1bias_m10+Branches_2bias_m10+Needlesbias_m

10)) 

mean(datos_dirichlet$totalbias_m10) 

#Compute mean RMSE of component biomass 

datos_dirichlet$Stemrmse_m10<-with(datos_dirichlet,sqrt((Stem-pStem_m10)^2)/16) 

sum(datos_dirichlet$Stemrmse_m10) 

datos_dirichlet$Branches_1rmse_m10<-with(datos_dirichlet,sqrt((Branches_1-

pBranches_1_m10)^2)/16) 

sum(datos_dirichlet$Branches_1rmse_m10) 
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dato_dirichlet$Branches_2rmse_m10<-with(datos_dirichlet,sqrt((Branches_2-

pbranches_2_m10)^2)/16) 

sum(datos_dirichlet$Branches_2rmse) 

datos_dirichlet$Needlesrmse_m10<-with(datos_dirichlet,sqrt((Needles-pNeedles_m10)^2)/16) 

sum(datos_dirichlet$Needlesrmse_m10) 

datos_dirichlet$totalrmse_m10<-

with(datos_dirichlet,(Stemrmse_m10+Branches_1rmse_m10+Branches_2rmse_m10+Needlesrmse

_m10)) 

sum(datos_dirichlet$totalrmse_m10) 

### For model 15 

fitted(model15) 

predict(model15,newdata=data.frame("DBH"=seq(10,10,1000), "Ht_m"=seq(10,10,100))) 

residuals(model15,type=c('standardized')) 

confint(model15) 

confint(model15, exp = TRUE) 

logLik(model15) 

round(vcov(model15), 3) 

#Compute predicted(fitted) percentages of component biomass 

datos_dirichlet$Stempp_m15 <- (fitted(model15)[,"Stemp"]) 

datos_dirichlet$Branches_1pp_m15 <- (fitted(model15)[,"Branches_1_1p"]) 

datos_dirichlet$Branches_2pp_m15  <- (fitted(model15)[,"Branches_2_1p"]) 

datos_dirichlet$Needlespp_m15  <- (fitted(model15)[,"Needlesp"])  

#Compute predicted(fitted) of component biomass 

datos_dirichlet$pStem_m15  <- with(datos_dirichlet,(Stempp_m15 *Totalbiomass)) 

datos_dirichlet$pBranches_1_m15 <-with(datos_dirichlet,(Branches_1pp_m15 *Totalbiomass)) 

datos_dirichlet$pbranches_2_m15 <-with(datos_dirichlet,(Branches_2pp_m15 *Totalbiomass)) 

datos_dirichlet$pNeedles_m15 <-with(datos_dirichlet,(Needlespp_m15 *Totalbiomass)) 

datos_dirichlet$pbiomastotal_m15 <-with(datos_dirichlet,(pStem_m15 +pBranches_1_m15 

+pbranches_2_m15 +pNeedles_m15 )) 
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# Compute mean bias of component biomass  

# -<caution 16 is the number of observations (n) 

datos_dirichlet$Stembias_m15=with(datos_dirichlet,((100/16)*(Stem-pStem_m15)/Stem)) 

mean(datos_dirichlet$Stembias_m15) 

datos_dirichlet$Branches_1bias_m15=with(datos_dirichlet,((100/16)*(Branches_1-

pBranches_1_m15)/Branches_1)) 

mean(datos_dirichlet$Branches_1bias_m15) 

datos_dirichlet$Branches_2bias_m15=with(datos_dirichlet,((100/16)*(Branches_2-

pbranches_2_m15)/Branches_2)) 

mean(datos_dirichlet$Branches_2bias_m15) 

datos_dirichlet$Needlesbias_m15=with(datos_dirichlet,((100/16)*(Needles-

pNeedles_m15)/Needles)) 

mean(datos_dirichlet$Needlesbias_m15) 

datos_dirichlet$totalbias_m15<-

with(datos_dirichlet,(Stembias_m15+Branches_1bias_m15+Branches_2bias_m15+Needlesbias_m

15)) 

mean(datos_dirichlet$totalbias_m15) 

#Compute mean RMSE of component biomass 

datos_dirichlet$Stemrmse_m15<-with(datos_dirichlet,sqrt((Stem-pStem_m15)^2)/16) 

sum(datos_dirichlet$Stemrmse_m15) 

datos_dirichlet$Branches_1rmse_m15<-with(datos_dirichlet,sqrt((Branches_1-

pBranches_1_m15)^2)/16) 

sum(datos_dirichlet$Branches_1rmse_m15) 

datos_dirichlet$Branches_2rmse_m15<-with(datos_dirichlet,sqrt((Branches_2-

pbranches_2_m15)^2)/16) 

sum(datos_dirichlet$Branches_2rmse_m15) 

datos_dirichlet$Needlesrmse_m15<-with(datos_dirichlet,sqrt((Needles-pNeedles_m15)^2)/16) 

sum(datos_dirichlet$Needlesrmse_m15) 

datos_dirichlet$totalrmse_m15<-

with(datos_dirichlet,(Stemrmse_m16+Branches_1rmse_m15+Branches_2rmse_m15+Needlesrmse

_m15)) 
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sum(datos_dirichlet$totalrmse_m15) 

########## GRAPHICS ############ 

## First of all 

##MODEL 6   (Repeat for all the model selected in order to obtain the graphics or for the best 

model selected change m3 by mX  X is the number of the model selected) 

datos_dirichlet$rStem_m6<-with(datos_dirichlet,(Stem-pStem_m6)) 

datos_dirichlet$rBranches_1r_m6<-with(datos_dirichlet,(Branches_1-pBranches_1_m6)) 

datos_dirichlet$rBranches_2r_m6<-with(datos_dirichlet,(Branches_2-pbranches_2_m6)) 

datos_dirichlet$rNeedles_m6<-with(datos_dirichlet,(Needles-pNeedles_m6)) 

datos_dirichlet$rbiomastotal_m6<-with(datos_dirichlet,(Totalbiomass-pbiomastotal_m6)) 

#save data 

save(datos_dirichlet, file="datos_dirichlet.RData") 

write.csv2(datos_dirichlet, 

file="C:/MEDfOR_Spain/MScThesis_MEDFOR_UVa/Data/First_Work_INIA/Eric 

Cudjoe_Palencia.csv") 

save.image("datos_dirichlet.RData") 

str (datos_dirichlet) 

###Graph 1 

## HEre the example for m3 model  (you should change for other models from here to the end 

changin for the right model number and statisctic    

##  for example changing in 'rStem_mX' changin X for the number of the model selected) 

par(mfrow=c(1, 4)) 

#Loaded library for graph 

library(car) 

scatterplot(datos_dirichlet$Stem~datos_dirichlet$rStem_m6,col="Black",main="Stem Biomass", 

            ylab="Residual (kg)", xlab="Observation (kg)") 

scatterplot(datos_dirichlet$Branches_1~datos_dirichlet$rBranches_1r_m6,col="Black",main="Thin 

Branch Biomass", 

            ylab="Residual (kg)", xlab="Observation (kg)") 



 

 

 
 
Eric Cudjoe 
Master Erasmus Mundus in Mediterranean Forestry and Natural Resources Management (MEDfOR)  

 
56 

scatterplot(datos_dirichlet$Branches_2~datos_dirichlet$rBranches_2r_m6,col="Black",main="Thick 

Branch Biomass", 

            ylab="Residual (kg)", xlab="Observation (kg)") 

scatterplot(datos_dirichlet$Needles~datos_dirichlet$rNeedles_m6,col="Black",main="Needle 

Biomass", 

            ylab="Residual (kg)", xlab="Observation (kg)") 

scatterplot(datos_dirichlet$Totalbiomass~datos_dirichlet$rbiomastotal_m6,col="Black",main="Total 

Biomass", 

            ylab="Residual (kg)", xlab="Observation (kg)") 

##Graph 2 

## to visualized RMSE versus DBH class 

library(lattice) 

par(mfrow=c(1, 2)) 

par(mar=c(1,1,1,1)) 

plot(datos_dirichlet$DBH,datos_dirichlet$Stemrmse_m6,ylim=c(-2,2),col=c("blue"), main="Stem 

Biomass", 

     ylab="RMSE(kg)", xlab="Diameter(cm)") 

plot(datos_dirichlet$DBH,datos_dirichlet$Branches_1rmse_m6,ylim=c(-2,2),col=c("blue"), 

main="Thin Branch Biomass", 

     ylab="RMSE(kg)", xlab="Diameter(cm)") 

plot(datos_dirichlet$DBH,datos_dirichlet$Branches_2rmse_m6,ylim=c(-2,2),col=c("blue"), 

main="Thick Branch Biomass", 

     ylab="RMSE(kg)", xlab="Diameter(cm)") 

plot(datos_dirichlet$DBH,datos_dirichlet$Needlesrmse_m6,ylim=c(-2,2),col=c("blue"), 

main="Needle Biomass", 

     ylab="RMSE(kg)", xlab="Diameter(cm)") 

plot(datos_dirichlet$DBH,datos_dirichlet$totalrmse_m6,ylim=c(-2,2),col=c("blue"), main="Total 

Biomass", ylab="RMSE(kg)", xlab="Diameter(cm)") 

#Graph 3 

## to visualizedlized Bias(%) versus DBH class 
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plot(datos_dirichlet$DBH,datos_dirichlet$Stembias_m6,ylim=c(-20,20),col=c("green"),main="Stem 

Biomass", 

     ylab="Bias(%)", xlab="Diameter(cm)") 

plot(datos_dirichlet$DBH,datos_dirichlet$Branches_1bias_m6,ylim=c(-

20,20),col=c("green"),main="Thin Branch Biomass", 

     ylab="Bias(%)", xlab="Diameter(cm)") 

plot(datos_dirichlet$DBH,datos_dirichlet$Branches_2bias_m6,ylim=c(-

20,20),col=c("green"),main="Thick Branch Biomass", 

     ylab="Bias(%)", xlab="Diameter(cm)") 

plot(datos_dirichlet$DBH,datos_dirichlet$Needlesbias_m6,ylim=c(-

20,20),col=c("green"),main="Needle Biomass", 

     ylab="Bias(%)", xlab="Diameter(cm)") 

plot(datos_dirichlet$DBH,datos_dirichlet$totalbias_m6,ylim=c(-20,20),col=c("green"),main="Total 

Biomass", 

     ylab="Bias(%)", xlab="Diameter(cm)") 

 

3.2. ANCOVA ANALYSIS FOR SCOTS PINE  

######### BIOMASS ALLOMETRY OF MONOSPECIFIC AND MIXED STANDS ###### 

# Select the working directory 

install.packages("tidyverse") 

library(tidyverse) 

library(datasets) 

install.packages("ggplot2") 

library(ggplot2) 

setwd("C:/MEDfOR_Spain/MScThesis_MEDFOR_UVa/Data/Final-Work/ANCOVA") 

data<-read.csv('data.csv', sep=',',dec='.',header=T, na.string='NA') 

### Relationship between independent variables  

#########  H-DBH ############ 

data$logHt_m<- with(data,log(Ht_m)) 

data$logDBH<- with(data,log(DBH)) 



 

 

 
 
Eric Cudjoe 
Master Erasmus Mundus in Mediterranean Forestry and Natural Resources Management (MEDfOR)  

 
58 

ggplot(data,aes(x=log(DBH),y=log(Ht_m),col=Variables))+geom_point()+geom_smooth(method="g

am") 

#######  Height-Crown base height 

data$logHt_m<- with(data,log(Ht_m)) 

data$logCrown_base_height<- with(data,log(Crown_base_height)) 

ggplot(data,aes(x=log(Crown_base_height),y=log(Ht_m),col=Variables))+geom_point()+geom_smo

oth(method="gam") 

#######  Height-Crown length 

data$logHt_m<- with(data,log(Ht_m)) 

data$logCrown_length<- with(data,log(Crown_length)) 

ggplot(data,aes(x=log(Crown_length),y=log(Ht_m),col=Variables))+geom_point()+geom_smooth(m

ethod="gam") 

#Done.. In conclusion, there is no difference between monospecific and mixed stands.  

########################### ANALYSIS OF COVARIANCE (ANCOVA) 

################################ 

# Select the working directory 

setwd("C:/MEDfOR_Spain/MScThesis_MEDFOR_UVa/Data/Final-Work/ANCOVA") 

data<-read.csv('data.csv', sep=',',dec='.',header=T, na.string='NA') 

# Pine biomass data: total biomass, stem biomass, branch biomass, needle biomass 

library('ggplot2') 

library('agricolae') 

library(car) 

library(multcomp) 

library(effects) 

library(lattice) 

library(colorspace) 

data$logDBH<- with(data,log(DBH)) 

data$logTotalbiomass<- with(data,log(Totalbiomass)) 

data$logStem<- with(data,log(Stem)) 
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data$logBranches_2<- with(data,log(Branches_2)) 

data$logBranches_1<- with(data,log(Branches_1)) 

data$logNeedles<- with(data,log(Needles)) 

# Some graphics for visualitation tendences and developemt versus DBH 

ggplot(data,aes(x=log(DBH),y=log(Totalbiomass),col=Variables))+geom_point()+geom_smooth(met

hod="gam") 

#     Although the graphics shows that could not be any differences between pure & mixed stands 

for the same species, we could check if  

##    it is true for all the biomass compartments (and check it in an ANCOVA analysis) 

ggplot(data,aes(x=log(DBH),y=log(Stem),col=Variables))+geom_point()+geom_smooth(method="g

am") 

ggplot(data,aes(x=log(DBH),y=log(Branches_2),col=Variables))+geom_point()+geom_smooth(meth

od="gam") 

ggplot(data,aes(x=log(DBH),y=log(Branches_1),col=Variables))+geom_point()+geom_smooth(meth

od="gam") 

ggplot(data,aes(x=log(DBH),y=log(Needles),col=Variables))+geom_point()+geom_smooth(method=

"gam") 

########################### ANCOVA analysis for PINE ########################### 

setwd("C:/MEDfOR_Spain/MScThesis_MEDFOR_UVa/Data/Final-Work/ANCOVA") 

 

data<-read.csv('data.csv', sep=',',dec='.',header=T, na.string='NA') 

 

PINE<-subset(data,Variables=="Mixed_pine" | Variables=="Pure_pine")  

## Total biomass 

#ANCOVA, because we have to see if the differences are only due to the advance in the 

development of the trees 

vinagremodel<-aov(log(Totalbiomass)~log(DBH)+Variables,data=PINE)  # The interaction does not 

come out significant, there are no different slopes only intercepts 

summary.lm(vinagremodel) 

summary(vinagremodel) 

vinagremodel 
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Anova(vinagremodel,type="III") 

adjustedMeans<-effect("Variables",vinagremodel,se=TRUE) 

summary(adjustedMeans) 

postHocs<-glht(vinagremodel,linfct=mcp(Variables="Tukey")) 

summary(postHocs) 

confint(postHocs) 

plot(vinagremodel) 

adjustedMeans$se 

summary.lm(vinagremodel) 

## To test the assumption of homogeneity of regression slopes we execute: 

hoRS<-update(vinagremodel, .~. + log(DBH):Variables) 

Anova(hoRS, type = "III") 

## STEM 

#ANCOVA, because we have to see if the differences are only due to the advance in the 

development of the trees 

vinagremodel<-aov(log(Stem)~log(DBH)+Variables,data=PINE)  # The interaction does not come 

out significant, there are no different slopes only intercepts 

summary.lm(vinagremodel) 

summary(vinagremodel) 

vinagremodel 

Anova(vinagremodel,type="III") 

adjustedMeans<-effect("Variables",vinagremodel,se=TRUE) 

summary(adjustedMeans) 

postHocs<-glht(vinagremodel,linfct=mcp(Variables="Tukey")) 

summary(postHocs) 

confint(postHocs) 

plot(vinagremodel) 

adjustedMeans$se 

summary.lm(vinagremodel) 
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## To test the assumption of homogeneity of regression slopes we execute: 

hoRS<-update(vinagremodel, .~. + log(DBH):Variables) 

Anova(hoRS, type = "III") 

## Branches 2 biomass (Thick branches) 

#ANCOVA, porque hay que ver si las diferencias solo son debidas al adelanto en el desarrollo de 

los árboles 

vinagremodel2<-aov(log(Branches_2)~log(DBH)+Variables,data=PINE)  #la interacción no sale 

significativa, no hay diferentes slopes solo intercepts 

summary.lm(vinagremodel2) 

vinagremodel2 

Anova(vinagremodel2,type="III") 

adjustedMeans2<-effect("Variables",vinagremodel2,se=TRUE) 

summary(adjustedMeans2) 

postHocs2<-glht(vinagremodel2,linfct=mcp(Variables="Tukey")) 

summary(postHocs2) 

confint(postHocs2) 

plot(vinagremodel2) 

adjustedMeans2$se 

summary.lm(vinagremodel2) 

## To test the assumption of homogeneity of regression slopes we execute: 

hoRS2<-update(vinagremodel2, .~. + log(DBH):Variables) 

Anova(hoRS2, type = "III") 

## Branches 1 biomass (Thin branches) 

#ANCOVA, porque hay que ver si las diferencias solo son debidas al adelanto en el desarrollo de 

los árboles 

vinagremodel3<-aov(log(Branches_1)~log(DBH)+Variables,data=PINE)  #la interacción no sale 

significativa, no hay diferentes slopes solo intercepts 

summary.lm(vinagremodel3) 

vinagremodel3 
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Anova(vinagremodel3,type="III") 

adjustedMeans3<-effect("Variables",vinagremodel3,se=TRUE) 

summary(adjustedMeans3) 

postHocs3<-glht(vinagremodel3,linfct=mcp(Variables="Tukey")) 

summary(postHocs3) 

confint(postHocs3) 

plot(vinagremodel3) 

adjustedMeans3$se 

summary.lm(vinagremodel3) 

## To test the assumption of homogeneity of regression slopes we execute: 

hoRS3<-update(vinagremodel3, .~. + log(DBH):Variables) 

Anova(hoRS3, type = "III") 

## Needle biomass 

#ANCOVA, porque hay que ver si las diferencias solo son debidas al adelanto en el desarrollo de 

los árboles 

vinagremodel4<-aov(log(Needles)~log(DBH)+Variables,data=PINE)  #la interacción no sale 

significativa, no hay diferentes slopes solo intercepts 

summary.lm(vinagremodel4) 

vinagremodel4 

Anova(vinagremodel4,type="III") 

adjustedMeans4<-effect("Variables",vinagremodel4,se=TRUE) 

summary(adjustedMeans4) 

postHocs4<-glht(vinagremodel4,linfct=mcp(Variables="Tukey")) 

summary(postHocs4) 

confint(postHocs4) 

plot(vinagremodel4) 

adjustedMeans4$se 

summary.lm(vinagremodel4) 

## To test the assumption of homogeneity of regression slopes we execute: 
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hoRS4<-update(vinagremodel4, .~. + log(DBH):Variables) 

Anova(hoRS4, type = "III") 

################## ANCOVA analysis for OAK ####################  

setwd("C:/MEDfOR_Spain/MScThesis_MEDFOR_UVa/Data/Final-Work/ANCOVA") 

data<-read.csv('data.csv', sep=',',dec='.',header=T, na.string='NA') 

OAK<-subset(data,Variables=="Mixed_oak" | Variables=="Pure_oak")  

## Total biomass 

#ANCOVA, because we have to see if the differences are only due to the advance in the 

development of the trees 

vinagremodel<-aov(log(Totalbiomass)~log(DBH)+Variables,data=OAK)  # The interaction does not 

come out significant, there are no different slopes only intercepts 

summary.lm(vinagremodel) 

summary(vinagremodel) 

vinagremodel 

Anova(vinagremodel,type="III") 

adjustedMeans<-effect("Variables",vinagremodel,se=TRUE) 

summary(adjustedMeans) 

postHocs<-glht(vinagremodel,linfct=mcp(Variables="Tukey")) 

summary(postHocs) 

confint(postHocs) 

plot(vinagremodel) 

adjustedMeans$se 

summary.lm(vinagremodel) 

## To test the assumption of homogeneity of regression slopes we execute: 

hoRS<-update(vinagremodel, .~. + log(DBH):Variables) 

Anova(hoRS, type = "III") 

## STEM 

#ANCOVA, because we have to see if the differences are only due to the advance in the 

development of the trees 
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inagremodel<-aov(log(Stem)~log(DBH)+Variables,data=OAK)  # The interaction does not come out 

significant, there are no different slopes only intercepts 

summary.lm(vinagremodel) 

summary(vinagremodel) 

vinagremodel 

Anova(vinagremodel,type="III") 

adjustedMeans<-effect("Variables",vinagremodel,se=TRUE) 

summary(adjustedMeans) 

postHocs<-glht(vinagremodel,linfct=mcp(Variables="Tukey")) 

summary(postHocs) 

confint(postHocs) 

plot(vinagremodel) 

adjustedMeans$se 

summary.lm(vinagremodel) 

## To test the assumption of homogeneity of regression slopes we execute: 

hoRS<-update(vinagremodel, .~. + log(DBH):Variables) 

Anova(hoRS, type = "III") 

## Branches 2 biomass (Thick branches) 

#ANCOVA, porque hay que ver si las diferencias solo son debidas al adelanto en el desarrollo de 

los árboles 

vinagremodel2<-aov(log(Branches_2)~log(DBH)+Variables,data=OAK)  #la interacción no sale 

significativa, no hay diferentes slopes solo intercepts 

summary.lm(vinagremodel2) 

vinagremodel2 

Anova(vinagremodel2,type="III") 

adjustedMeans2<-effect("Variables",vinagremodel2,se=TRUE) 

summary(adjustedMeans2) 

postHocs2<-glht(vinagremodel2,linfct=mcp(Variables="Tukey")) 

summary(postHocs2) 



 

 

 
 
Eric Cudjoe 
Master Erasmus Mundus in Mediterranean Forestry and Natural Resources Management (MEDfOR)  

 
65 

confint(postHocs2) 

plot(vinagremodel2) 

adjustedMeans2$se 

summary.lm(vinagremodel2) 

## To test the assumption of homogeneity of regression slopes we execute: 

hoRS2<-update(vinagremodel2, .~. + log(DBH):Variables) 

Anova(hoRS2, type = "III") 

## Branches 1 biomass (Thin branches) 

 

#ANCOVA, porque hay que ver si las diferencias solo son debidas al adelanto en el desarrollo de 

los árboles 

vinagremodel3<-aov(log(Branches_1)~log(DBH)+Variables,data=OAK)  #la interacción no sale 

significativa, no hay diferentes slopes solo intercepts 

summary.lm(vinagremodel3) 

vinagremodel3 

Anova(vinagremodel3,type="III") 

adjustedMeans3<-effect("Variables",vinagremodel3,se=TRUE) 

summary(adjustedMeans3) 

postHocs3<-glht(vinagremodel3,linfct=mcp(Variables="Tukey")) 

summary(postHocs3) 

confint(postHocs3) 

plot(vinagremodel3) 

adjustedMeans3$se 

summary.lm(vinagremodel3) 

## To test the assumption of homogeneity of regression slopes we execute: 

hoRS3<-update(vinagremodel3, .~. + log(DBH):Variables) 

Anova(hoRS3, type = "III") 

## Needle biomass 
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#ANCOVA, porque hay que ver si las diferencias solo son debidas al adelanto en el desarrollo de 

los árboles 

vinagremodel4<-aov(log(Needles)~log(DBH)+Variables,data=OAK)  #la interacción no sale 

significativa, no hay diferentes slopes solo intercepts 

summary.lm(vinagremodel4) 

vinagremodel4 

Anova(vinagremodel4,type="III") 

adjustedMeans4<-effect("Variables",vinagremodel4,se=TRUE) 

summary(adjustedMeans4) 

postHocs4<-glht(vinagremodel4,linfct=mcp(Variables="Tukey")) 

summary(postHocs4) 

confint(postHocs4) 

plot(vinagremodel4) 

adjustedMeans4$se 

summary.lm(vinagremodel4) 

## To test the assumption of homogeneity of regression slopes we execute: 

hoRS4<-update(vinagremodel4, .~. + log(DBH):Variables) 

Anova(hoRS4, type = "III") 

 


