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Abstract

The Eddycovariance method is a widespread method used for measuring carbon fluxes between the
atmosphere and the ecosystem. It provides a high temporal resolution of measurements, but it is
restricted to marea around the tower called footpramd other methodse usually used in combination

with eddy covariance data in order to estimate carbon fluxes for larger areas. Spectral vegetation indices
derived from increasingly available satellite data can be combined with eddy covariance data to estimate
carbon flwes outside of the tower footprint. Following that approach, the present study attempted to
model carbon fluxes for a karst grassland in Slovenia. Three types of model were considered: (1) a linear
relationship between NEE or GPP and each vegetation i(@)ex]inear relationship between GPP and

the product of a vegetation index with PAR, and (3) a simplified LUE model assuming a constant LUE.
We compared the performance of several vegetation indioas tivo sources (Landsat and SROT
Vegetation) as prediars of NEE and GPP, based on three accuracy metrics (R2, RMSE and AIC). Two
types of aggregation of flux data were explored, midday average flogedadly average fluxes. The

Vapor Pressure Deficias used to separate the growing season in two plaagesening phase and a

dry phase, which were considered separately in the modelling process, in addition to the growing season
as a whole. The results showed that NDVI was the best predictor of GPP and NEE during the greening
phase, whereas water relategfjetation indices, namely LSWI and MNDW!I were the best predictors
during the dry phase, both for midday and daily aggregates. Model type 1 (linear relationship) was found
to be the best in many cases. The best regression equations obtained were ustdtmtiie mapping

of GPP and NEE for the study area.

Keywords: Eddy covariance, carbon flux, GPP, NEE, Vegetation indices.



Resumo

O método micrometeorolégico da covariancia turbulenta € o método lider para medir as trocas de
carbono entre a atmosfera e a biosfera. Apesar da alta resolucao temporal destas medic@ks, a area
influéncia é restrita ao redor da torre onde rasdicdes sdo efectuadas. Os indices de vegetacéo
espectrais podem ser combinados com dados de covaridrizilenta para extender a estimatiies

fluxos de carbono para aléda area de influencia da torre. Seguindo essa abordagem, o presente estudo
tentou modelar os fluxos de carbono para uma pastagem carsica na Eslovénia. Trés tipos de modelos
foram consideados: (1) uma relacdo linear entreProdutividade Primaria LiquiddPPL) ou a
Produtividade Primaria Brut@PB e cada indice de vegetacao, (2) uma relacdo linear entre PPB e 0
produto de um indice de vegetacdo cammadiacdo fotossinteticamente atiga(3) um modelo
simplificado de eficiéncia de uso de I(EUL) no qual a EUL foi assumido como sendo constante.
Comparamos o desempenho de varios indices de vegetacdo de duas fontes como preditores de PPL e
PPB, com base em trés métricas de exatiddo (R?ERMSIC). Dois tipos de agregacdo de dados de

fluxo foram explorados, a média dos fluxos por volta do meio dia solar e a média diaria. O Défice de
Presséo de Vapor foi utilizado para separar duas fases, ao longo do ano, uma fase de crescimento e uma
fase @ stress estival, que foram consideradas separadamente no processo de modelagdo. Os resultados
mostraram que o NDVI foi o melhor preditor de PPB e PPL durante a fase de crescimento, enquanto 0os
indices de vegetacdo relacionados com o contetdo hidrico, ESMINDWI foram os melhores
preditores durante a fase de stress estival, tanto para edimeiomo para os agregados diarios. O
modelo 1 foi o melhor em muitos casos. As melhores equacdes de regressao obtidas foram utilizadas

para ilustrar o mapeamento EIEB e PPL para a area de estudo.

Palavras-chave: Método micrometeorolégico da covariancia turbulenta, Ftiexecarbono, PPB, PPL,

indices de vegetacao.



Resumo alargado

As pastagens sdo um dos tipos de vegetacdo mais difundidodaeomundo. O fato de poderem atuar

como fonte de carbono durante os eventos de seca levou a um fraco reconhecimento de seu papel no
ciclo global de carbono. No entanto, as pastagens desempenham um papel consideravel neste ciclo, uma
vez que armazenam @nguantidade importante de carbono nos seus solos. Portanto, € importante
estudar o sequestro de carbono nas pastagens e perceber de que maneira estas podem contribuir para
mitigar os efeitos das mudancgas climaticas. O método micrometeoroldgicoatmaia turbulenta

(eddy covaiance) é a técnica lider mundial para medicéo das trocas geHge energia entre a

biosfera e a atmosfera. O método tem a vantagem de realizar medi¢6es diretas de diferentes gases com
alta preciséo e detalhes. A fim de mon#ar os fluxos de Coe HO em pastagens , uma torre para a
medicdo de fluxos pelo método da covariancia turbulenta foi instalada na regiad de Podgorski Kras
desde 2008, fornecendo medicdes da Produtividade Primaria Liquida (PPL) e da evapotranspiracao.
Apesar da alta resolucao temporal destas medi¢des, a area de medi¢éo é restrita a uma area de influéncia
ao redor da torre, com um alcance de cerca 200m.

Os indices de vegetacdo espectral derivados de dados de satélite podem ser combinados com dados
obtidos por meio da covariancia turbulenta, para estimar os fluxos de carbono para além da area de
influencia da torre. Diferentes tipos de modelos matematicos existem para este fim. Estes sdo baseados
no conceito simples, mas eficaz, de eficiéncia de uso d&liz) de Monteith, que esta enraizado na

forte relacdo existente entre a Produtividade Primaria Bruta (PPB) e a radiag&o fotossinteticamente ativa
(RFA) absorvida pela vegetacédo. No entanto, esse tipo de modelo rsasfrequentemente limitado,

devido adificuldade em determinar alguns de seus parametros. Como alternativa, alguns estudos
estimaram PPB ou PPL por meio de regressao linear, adotando indices espectrais de vegetacdo como
variaveis explicativas.

Reunindo dados de covariancia turbulenta e ésdie vegetacdo, o presente estudo tentou modelar
fluxos de carbono para a pastagem Carsico Eslovena. Trés tipos de modelos foram considerados: (1)
uma relacéo linear entre PPL ou PPB e cada indice de vegetacéao, (2) uma relacdo linear entre PPB e o
produtode um indice de vegetacdo com RFA e (3) um modelo simplificado de eficiéncia de uso de luz

no qual EUL foi assumido como sendo constante. Comparamos o desempenho de varios indices de
vegetaca de duas fontes (Landsat e SP@dgetation) como preditores &L e PPB, com base em

trés métricas de exatiddo (R2, RMSE e AIC). Dois tipos de agregacdo de dados de fluxo foram
explorados, a média dos fluxos por voltandeio dia solar e a média diari@ Déficit de Presséo de

Vapor foi utilizado para separar duasds, ao longo do ano, uma fase de crescimento e uma fase de
stress estival, que foram consideradas separadamente no processo de modelagéo. Os resultados foram

comparados com as regressdes obtidas considerando uma Unica estacao de crescimento.

Os resultados mostraram que o NDVI foi o melhor preditor de PPB e PPL durante a fase de crescimento,

enquanto os indices de vegetacédo relacionados com o conteudo hidrico, LSWI e MNDWI foram os
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melhores preditores durante a fase de stress estival, taat® paeiedia como para os agregados

diarios. Embora os resultados das duas fontes de indices de vegetacdo ndo pudessem ser comparados,
observamos que os R? obtidos a partir dos NDVIs (NDVI da SP€yEtation) foram geralmente
menores do que o R2 obtido arfir dos indices de vegetacao derivados de Landsat. No geral, os fluxos
médios do meialia estavam mais correlacionados com os indices de vegetacdo do que os fluxos médios
diarios. Isto devse a uma menor flutuagéo nos fluxos médios do-di@ialevido aeduzida escala de

tempo considerada. O modelo tipo 1 (relacdo linear entre fluxos e indices de vegetacédo) foi o melhor
em muitos casos, confirmando o fato de que a radiagao fotossinteticamente ativa absorvida (RFAA) pela
vegtacdo, ou seja a area foliapksa a maior parte da variabilidade de PPB em um ecossistema
caracterizado por uma marcada sazonalidade como pastagens e culturas agricolas anuais. As melhores
equacdes de regressao obtidas foram utilizadas para ilustrar o mapeamento de PPB e PRiapigra a &
estudo. Mapas de fluxos de carbono ajudam a avaliar sua variabilidade espacial e temporal. O indice
NDVI, independentemente do satellite utilizado, mostrou na maioria dos casos distribuigdes similares,
com diferencas causadas principalmente péésatica na resolugéo espacial.

Uma das principais limitacdes deste estudo é o fato de que ndo houve validagdo dos melhores modelos
selecionados devido a uma quantidade limitada de dados disponiveis. Além disso, o fato de obter
melhores resultados separaraoiclo anual em duas fases climaticas sugere que o uso dos resultados

em grandes areas vai necessitar de dados climéticos para o calculo de VPD (por exemplo, de estacdes
meteoroldgica). A adocao de regressdes empiricas restringe a utilidade dos madelregs com
condicbes semelhantes. Recomendacdes para pesquisas futuras seriam a validacdo dos modelos, assim
gue os dados estivessem disponiveis. As imagens do Landsat 7 também podem ser exploradas para usar

todos os dados de covariancia turbulentaatfiseis antes de 2014.

Palavras-chave: Método micrometeorolégico da covariancia turbulenta, Fluxo de carbono, PPB, PPL,

indices de vegetacéo.
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1. Introduction

Graslands are one of the most widespreegetation types worldwide, coveribgtween 14 and 26%

of theearthsurface(Mason and Zanner, 2005; Scurlock and Hall, 198®yeover, theyare increasing

in area recentlgue tothe abandonmenf former agricultue landsin some parts of the world. In fact,

the transformation of the agricultural context has released many areas from use in Europe, and such
areas would naturally undergo succesgBanjamin et al., 2005from grasslands to shrublands and

forests

In Slovenia, abandoned agriculture lands in the karst region are known to go through some successional
stages such as grasslands and woody ecosy¢tdme r | an et al ., 2 0 Exh Kal i ¢
succession stage has a different carbon balance. In fact, while forests are known to act as a sink
accumulating carbon in their woody biomdgerlan et al., 2016; Pan et al., 2011; Post and Kwon,
2000) grasslandsnayact as a source of carb@rerlan et al., 2011particularlyin periods ofdrought

when the lack of precipitationcan decrease photosynthetic carbon uptékemone Il et al., 2008;
Gilmanov et al., 2007; Meyers, 200bdy as a consequee of other distlrances (e.dire events)This

ledto a poor recognition of the robé grassland ecosystems in the global carbon dy{ad et al., 1995;

Hall and Scurlock, 1991 However, grasslarsplay a tremendous role as thstock an important
amount of carboim their soils estimatedat 23% of the global soil carboriBuringh, 1984)Given this

fact, it is important to study the extent of carbon sequestratignasslandsind understand how they

contribute in mitigating the effects of climate change

The Eddy Covariance (EC) method permits to measairecosysteracale the atmospherecosystem
exchange oivater, energy an@0; fluxes (Papale et al., 2006]he method consists of measurements

of the net exchange of gases between the atmosphere and theeecasysve the canopyhere
turbulence can be osidered more or less constéRerlan, 2013)It has been useaff the first time in

the 1970s(Baldocchi et al., 1988; Desjardins, 197at)d since thenhas been widelymployedin
different ecosystem types around the w@Bdldocchi, 2008; Ferlan et al., 2011, 2016; Haszpra et al.,
2005; Y:L. Li et al., 2008; Peichl et al., 2012; Ruimy et al., 1995; Saigusa et al., 2002; Yan et al., 2015;
Yao et al., 2018)The eddy covariance method prosgdareliabledirect measuremertf different gas
compoundgogether with meteorological valiles,at high temporal detaipermittingto ascertain the

influence of climate drivers or other disturbances on ecosystem {lBxdsa and Anderson, 2010)

The ady covariance measurements represent fluxes in an area arotmdeh@amed footprint)the
size and shape of whicdependon the setup of the equipmenthe structure and height of treanopy
and varies with prevalémwind directionand speedUsually, the footprintextends over a distance
rangingfrom tens of meterso more tharilkm from the towef(Gockede eal., 2008) In the Slovenian
karst grasslandootprint analyses showed ththe mean distance from the towisrabout 195n (Ferlan,

2013) This spatiallimitation raise the necesgy to find a way to estimate carbon fluxestside the
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footprint of theeddy covarianctower, sincetiwould be costly and unfeasible to install towers to cover

all areas of interest

NEE is the result of the baland®tweenwo components, the respiration of the ecosystes)(&d

the Gross Primary Produeiy (GPP), which representthe amount of carbon fixedhrough
photosynthesisA possible approach to estimaBPP outside the limits othe footprint ofan eddy
covariancdoweris the use of remole sengdinformation In fact, optical data sudmssatellite images

can be applied to estimate carbfinxes by establishingrelationships between rembtesensed
information and fluxesn orderto extrapolate GPP outside the boundariesaaiower footprint
Reflectance values obtained from remote platforms in specific wavelengths are generally employed to

calculate normalized differences to obtaincipd vegetation indices (VIs).

Light-Use Efficiency mockls are the most frequently appliedestimate GPP fromwegetation indices
(VIs) remotely retieved (Nestola et al., 2016BesidesLUE models empirical models based on the
relationship observed between Vis and GPP are also frequapgijed (Gilmanov et al., 2005;
Zhengquan Li et al2007; Nestola et al., 2016; Rossini et al., 20kRaddition, gnce photosynthesis
(GPP) and respiration {(R) aregenerallypositively correlated@Baldocchi, 2008; Baldocchi et al., 2015;
Ma et al., 2016)it is oftenpossibleto inferbothNEE and GPP from remotsensingproducts.

The general objective of thigudyis to estimateNEE and GPHor a karstgrasslandn the Podgorski
Kras plateau by combining botlay covarianceand stellite data in order to provide a basis for large

scale monitoring of the carbon balame¢he Podgorski kargjrassland

In order to reach thatbjective,this study aims to

i) Evaluate the ability oflifferent VIs retrieved from remote sensiptforms torepresentGPP and
NEE trendsin a karst grassland,

i) Compare th performance dfifferent models, integrating Vs the estimation of GPP and NEE

iii) Apply obtained result®» mapNEE and GPHor a grassland ardéa the Podgorski KraBlateau.

2. State of the art

2.1. Principle ofthe eddy covariance method

Airflow consists of numerous digs. The general principle of eddgwariance measurements can be
understood as the covariance betwietoncentration of interest and vertieahd speed in the eddies
(Burba and Anderson, 201@ut simplerjt consists of measuring how many particlesobmponent

of interestare noving up and down over time and how fast they (&exlan, 2013)The horizontal
airflow overaninvestigated ares composed of numerous rotating eddiest can be represented at a
single point on the towdny the Figure 1.At a given moment (time 1), eddyrioves airparcel ¢
downwardwith the speed w At the same point, the next moment (timee2ldy 2 moves air parcel ¢

upwardwith speed w Given that each air parcel has its own characteristicgag.concentration,
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temperature, humidity, etdf these characteristics and the speed of vertical air movearmemeasured,

the vertical upward or downward fluxearndbe known(Burba and Anderson, 2010)

time 1 time 2
eddy1 eddy 2

air ;
1 w, w, I‘ air

Figure 1. Schematic representatiof eddy covariance principleSource(Burba and Anderson,
2010)

The eddy covariance method has the advartégerformingdirect measuremesifor different types

of gas (CQ, HxO, CHy, etc.) with high precision and detafBurba and Anderson, 201Mlowever,

there are some problems related to the eddy covariance métteohainproblemis theoccurrence of

gaps in the datavhich need to be filled by statisticagressions vth different methosl Gaps occur

due to power breaks (mostly when power system is based on solar panels), damages to instruments, for
instance, due to animals or lightni@gubinet et al., 2012)in addition,equipment malfunctioninguch

as the anemometers that might not workirfytheavy precipitation eventsould make the eddy
covariancesystemglitch during rainy period¢Ferlan, 2013)Another limitation of the method is its

restriction to flat area@Burba and Anderson, 2010)

The Net ecosystem Exchange EHN) of CO, between the atmosphere and the biosphere measured by
eddy covariancecan be partitioned into the two components of carbon fluxes, Gross Primary
Productvity (GPB and ecosystem respirationR{) (Lasslop, Reichstein, Papale, et al., 2010;
Reichstein et al., 2005BPP refers to the total amount of carbon fixed in the process of photosynthesis
by plants in an ecosysteRscois the amount of carbon Idsy autotrophic and heterotrophic respiration.
NEE refers to thébalance betweeBPPandcarbon losses due to ecosya respiratiorfAubinet et al.,

2012; Kirschbaum et al., 20043} in the equatiorl) hereafter.

NEE = GPP + Re (1)

Where NEE is the Net Ecosystdaxchange, GPPsithe Gross Primary Productivighd R is the
Ecosystem RespiratiolVe adopted in this study tlamospherisign convention where a flux toward
the surface (carbon uptghee. GPP is negativewhereas a flux upward the atmosphere (canelease,
i.e. Reco) is positive(Baldocchi, 2008; Lasslop, Reichstein, Detto, et al., 2@®sequetly, a negative
NEE indicates that the ecosystem is acting as a carborwsiitdka positive NEE indicates that the

ecosystem is acting as a source of carbon.
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2.2. Carbon fluxes estimates integrating remote sensing data

With the increasing availdly of spatial data thanks technological progredsillesand et al., 2004)
their integration into GPP models raised consider@idkelad et al., 20071 UE models are the most
widely used models for integrating carbon fluxes and optical measurefheasset al., 2018; Nestola
et al., 2016)thanks to the ease of applicability, with the possibility taeee indirectly all variables
(Bagnara et al., 2018)

LUE models can be expressed in a general form as fo{duan et al., 2014)
GPP = PAR* fAPAR * LUEqax* M 2

Where PAR is the incident photosynthetically active radiation (MJ; APAR is the fraction of
absorbeghotosynthetically active radiatiphUEmaxis the potential LUE (g C fiMJ! APAR) under
ideal environmental conditionand M is a modifiethat depends on environmental conditioasd

constraind UEmax to its actual value.

One main limitation of LUE models is related to the LAJHerm in the models. It is expressed as a

biomespecific constant in most of the modéBoerner et al., 2011; Rossini et al., 2012)

In grasslandsAPAR can be assumed to explain most of the variabiligP(Lobell & al., 2003)and
therefore LUE LUEn*M in equation 1)is generallyconsideredconstant(Nestola et al., 2016)
However considering LUE as a constdetds often to errors in the estimate of GPRhéir study,
Nestola et al(2016)obtained betteresultssplitting the analysis in two par{greening and senescence
phaseskylongthe growing season. By doing so, aswhsideringa different LUE for each of the 2

periods, carbon fluxeseremore accuratly estimated.

Ground cover and leafreaare significant variables that determine absorptioRAR by the canopy.
Thanks to the empirical relation that exists betw@dtAR and vegetation indicéRunning et al., 2004;
Yuan et al., 2014)the latter are used in many studies as proxy of carbon f{ie=tola et al., 2016;
Yan et al., 2015; Y. Zhou et al., 2014#) fact, given theobustrelationship betweerAPAR and Leaf
Area Index(X. Zhou et al., 2002)the fAPAR can bedeterminedbased on vegetation indices derived
from remote observations of surface spectral reflect@Mgaeni and Williams, 1994)

Despite thancreasingly availabl@anoply of vegetation indicetheir usefor estmating fAPAR has
been limited tane or two(Y. Zhou et al., 2014)Some of thenostwidely used indiceinclude NDVI
and EVI(Yan et al., 2015; Y. Zhou et al., 201#) fact, NDVI andfAPAR increase with ground cover
and plant leaf area, and their good relatiopshade it possible to estimd#®PAR from NDVI in many
studies(Myneni and Williams, 1994)Nestolaet al. (2016)confirmed the effectiveness of NDVI as a
metrics of green biomass, making it a useful parameter in a simple expressien.bft model for a

grassland ecosystem.
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DespiteNDVI being a good metrics of green vegetation, fjuste sensitive to background reflectance
and tends to saturate at high leaf ateasuch conditions, EMdould beemployed as an alternative to
NDVI because it is less sensitive to these limitatigt@cha and Shaver, 2009)

Other vegetation indices similar to NDVI and EVI could also be explored. For instance, by using the
Green instead of the Red bddthe calculation of NDVI, the Green NID (GNDVI) is more sensitive

to chlorgphyll content in plants than ND\{(Gitelson et al., 1996)he Soil Adjusted Vegetation index
(SAVI) is modified from NDVI by including a so#djustmentfactof J ovanovi i. et al .,

To overcome the main limitation of LUE models (difficulties in the estimaticgheLUE term of the
models), some authors attempted to estimate NEE or GPP through linear regression, considering

vegetation indices as independent variafiNestola et al., 2016; Rossini et al., 2012)

In these empirical modelsther satellitederived indicesiot only related withAPAR can be explored,

for example vedgation indices known to be alile depict surface water contefihese indices include

the Normalized Difference Senescent Vegetation Index (NDSVI), the Land Surface Water Index
(LSWI) and the Modified Normalized D#gfence Water Index (MNDW(HIill, 2013; John et al., 2008;

Yan et al., 2015)Waterrelated vegetation indices can be very good indicators of plant activity in
summer when other vegetation indices could be stationary due to some greenness of the plants despit
the very low photosynthetic activityn fact, they are more sensitive to drought than greenness related
vegetation indice@Bajgain et al., 2015)

While vegetation indices, and NDVI in particulprovedin many cases to be effectiveapproximating

GPP through theAPAR component in a LUE modé@yneni and Williams, 1994; Nestola et,&016)

they are less correlated with ecosystem respiratiaking Rco usually the most important source of
uncertainty in NEE estimatiothrough remote sensinfran et al., 20%). Moreover, ecosystem
respiration is the sum of heterotrophic (microbes, soil fauna) and autotrophic (plant roots) respiration
(Bond-Lamberty et al., 2004; Hanson et al., 2QQ@hich wouldmakeits estimaton more difficultin

some complex ecosystems involving importeontributionof heterotrophiaespiration.However in

some cases it was possible to estimate NEE adopting models integratitg sensing product{®.g.
Nestola et al2016.

3. Materials and Methods

3.1. Study area

The present study was conducted in the Podgorski Kras plateau located initied#igioraneanegion

of southwestSlovenia The area underwent major human influences, due to its position at the transition
between théMediterraneammnd central Europén fact, agricultural practices such as overgrazing in the
past centuries led pronounced destruction of the vegetatimver, causing sevesoil erosionand

resulting into a stony and bare landscdpewever, thanks to the economic developrmenising the
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nearabandonment of agricultupracticesn the areaa succession is taking plaaadwe can observe

in theplateauifferent vegetation types ranging from grasslands to secondary oak {Beatds, 2013)

The bedrock isnainly composedf limestone fromPaleocene anBocene(Knez et al.,2015) The
chemical weathering known as karst phenomena led to the formation of Leptosols and Cambisols, which
represent insoluble fetions of carbonate As a result, lte soil issuperficial, with depths ranging from

0 cm to several decimeters in spidckets between rockShe organic matter represematbout 1215%

of the topsoilFerlan, 2013)

The climate of the area tsansient betweemediterranean and continentél.is more humid than a

typical Mediterranean climateavith less pronounced dry period in summer and colder wiihisroften
referredto as submediterranean climate, with a are annual temperature of 10.5°C, a mean daily
temperature of 1.8°C and 19.9°C in January and June respectively, and an average annual precipitation
around 1370 mmClimate statistics represent 30 years average (2900) of four meteorological
stations in the sulmediterranean regigfitARS, 2018)Winters are windy (Bora wind), with a periodic

show coverThe growing season ranges froarch or Aprilto October(Ferlan, 2013)

This study was limited ta homogenous area gfasslandFigure 2) where only herbaceous species
are present with the exception of few shrili®e most abundant grassland specie8esmopsis erecta
(Huds.) Fourr.,Carex humilisLeyss., Stipa eriocaulisBorb., Centaurearupestris L., Potentilla
tommasinianaF.W. Schultz, Anthyllis vulneraria L., Galium corrudifolium Vill. and Teucrium

montanumni.

In order to monitor C@and HO fluxes between extensivgrassland and atmosphere, aluye
covariance tower was installed aeth posi ti on i ndicated in Figure 2
since 2009Ferlan et al., 2011providing measurements of carbon Net Ecosystem Exchange (NEE)

and evapotranspiration between the atmosphere and grassland ecosystem.
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A  Eddy Covariance tower

- Borders of Slovenia
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Figure 2: Study area, a karst grassland

3.2. Data acquisition

3.2.1. Eddy Covarianceand meteorologicaldata

Apart from @ eddy covariance systeia weather station was alswstalled on the grassland since July
2008.The edly covariance system consists of@ren path infrared gas @z and HO) analyer (LI-
7500, LiCor, Lincoln, NE USA) and a sonic anemométéBA-1, Metek GmbH, EImshoriermany)
installed at 2n height Flux data were recorded 20 Hz and then averaged on a Hadurly step The
weather sition providesneasurements @nvironmentalariablessuch as soil temperatursnil water
content, incident radiationincident and reflected photosynthetic flux density, net radiation, air
temperature, humidity, soil heat flux and precipitatidh.measurementsf environmentalvariables
were done at 0.1 Hz and then averagedailirly (Ferlan et al., 2011)

Air temperature and global radiation data were gapfilled based on data from a meteorological station
located in Kopefat a distance df5Km from the tower) NEE data wergartitioned intocGPPand Rco
according toLasslop et al.(2010) using aytime datebased estimates;onsidering temperature
sensitivity of respiration and VPD limitation of GPP.
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3.2.2. Spectral vegetation indices

In this study two sources of data were consideréde 300m resolution NDVUdata consisting of 10
days aggregates of NDMprovided bythe SPOT-Vegetation mission and available for the whole world
since 2014were downloadedrom Copernicus global land service por(@GLSP, 2017)Landsat8
Operational Land Image®(I) imageg30m resolutionyvere downloaded fra the portal of the United
States Geological SurvéySGS, 2018jor the growingseasorfMarch to October) from 2014 2017.
Landsat 8 images have a temporal resolution of 16 days. However, cloudermerednostof them
uselesgSaranya, 2014; Sun et al., 20&7pur study Therefore selectedmages included alvailable
imageswith no or insignificant cloud covén the footprintof the tower Contrarily to SPOIVegetation
NDVI data, Landsat images represent single date imddesTable 1 presents the different bands of
Landsat &ndthose of SPO¥egetationsatellite

Once downloaded, the Landsat images underwent a radiometric calibratimmveat radiance values

to Top of Atmospheregeflectance, followed by an atmospheric correction through Dark Object
Subtraction in order to remove atmospheric components such as scattering and absorption of solar
energy in the atm@here and obtain Top @anopy eflectancgChavez, 1996)The image processing

was conducted witthe ENVI 5.1 software.

Table 1. Spectral range dfandsat and SPGVegetationbands

Name Landsatrange(um) SPOTFVegetationrange(um)
Ultra Blue (coastal/aerosol) Band 1(043571 0.45]) |

Blue Band 2(0.4521 0.512) Band 1(0.4301 0.470)
Green Band 3(0.5331 0.590) i

Red Band 4(0.63671 0.673) Band 2(0.61071 0.680)
Near Infrared (NIR) Band 5(0.851i 0.879) Band 3(0.79071 0.890)
Shortwave Infrared (SWIR) 1 Band 6(1.56671 1.651) Band 4(1.58071 1.750)
Shortwave InfraregSWIR) 2 Band 7(2.1071 2.294) |
Panchromatic Band 8(0.50371 0.676) |

Cirrus Band 9(1.3631 1.384) |

Thermal Infrared (TIRS) 1 Band 10(10.607 1119 |

Thermal Infrared (TIRS) 2 Band 11(11.507 12.51) |

The corrected images were used to computariety of vegetation indicefTable 3, namelythe
Normalized Difference Vegetation Index (NDYthe Green Normalized Difference Vegetation Index
(GNDVI), the Enhanced Vegetation Index (EMHe LandSurfaceWater Index (LSWI)the Modified
Normaized Difference Water IndexXMNDWI), the Soil Adjusted Vegetation Index (SAVIand the

Normalized Difference éhescenVegetation Index (NDSVI)

For NDVI data from the SPOVegetation mission (NDVIs) (directly downloaded from the Copernicus

global land service portal) and all vegetation indices computed from Landsat images (Table 2), an
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average value was computed for the pixels in the footprigu(Ei2) using the Raster package in R

software.

Table 2: Vegetation indiceadopted for this study
Satellite Index Formula Reference
SPOT NDViIs NDVIs = (b3 T by) / (by + ) Rouseet al.(1974)
L8 NDVI NDVI = (bs T bs) / (bs + by) Rouseet al.(1974)
L8 GNDVI GNDVI = (bs - bs) / (s + bs) Gitelson et al(1996)
L8 EVI EVI=(25* (b7 bs))/ (bs+ 6*bsai 7.5*, + 1) Hueteet al.(2002)
L8 NDSVI NDSVI = (bs T bs) / (bs + ) John et al(2008)
L8 SAVI SAVI = (1 + L)(s T bs)) / (bs + s + L) Huete(1988)
L8 LSWI LSWI = (bs- be) / (bs + bx) Xiao et al.(2005)
L8 MNDWI MNDWI = (bs T be) / (bz + be) Xu (2006)

L is a constantlependent on the vegetation cover and tathses from0 (for very green vegetation) to 1 (areas
with no green vegetation), assumed 0.5 here.

Despite the availability of flux data since 2008, ontyn@eframe offour yearswas considereth order

to match the timeframe of themote sensing information used in this study.

3.3. Data analysis

In this study, we considered two types of aggregatifluxdata. The first type of aggregation consisted
of midday average of halfourly fluxes between 11 am and 4 pm aNéstola et al(2016) The second
type of aggregation consisted of daily average of-hailfrly fluxes.For further analysis, middagr
daily flux data weresubsequentlgrouped at different time steg-or NDVIs datg midday or dailyflux
dataweresubsequentlgveraged over 10 days pertadnatch temporal aggregation provided by SPOT
Vegetation For VIs derived fromLandsat 8 images, midday daily flux data weresubsequently
averaged oveb days(4 days prior to thelate of each imageynce a preliminary test showed a better

correlationif aggregated fluxes were considered instead of fluxes of the overpass day only.
Threetypes of model aftdRossini et al(2012)were tested in thigwsdy:

i) Model 1 assuming a direct linear relationship between GMHEEand a egetation index

NEE orGPP = a*Vl + b (3)

i) Model 2 assuming a direct linear relationship between GPP and the prodweigettation index and
PAR

GPP = a*(VI*PAR)+ b (4)

iii) Model 3, a LUE modelassuminga constant LUEand fAPAR estimated as a linear function of a
vegetation index

GPP = (a*VI+b)*PAR (5)

All models were testetbr the entire growing seasoifsingle) or splitting the growing season in two
phaseqgreen and dry)The separation of the growing season was based on preliminarguesis
whichwe plotted GPP or NEE as a function of VIs and tried a separation based on mbetimnths

of June, July and Augustlowed a visual identification & dfferent group. However, the separation
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was notperfectanddifferent values ofmiddayaggregatesf Tair and VPD(averaged ovet0 daysfor
SPOTVegetation NDVIs and 5 dayer Landsat VI3 were tried instead of months. VPD proved to be
the best for separating the growing season into 2 phases, with a threshold of 13@0dEfned the
greening phasasthe periodf the growing season with midday average M&§3 than or equal to 1500
Pa,andthedry phasesthe period of thgrowing seasowith midday averge VPDgreater than 1500
Pa.

In order to compare the performance of the models obtained from the different regrabsams,
accuracy metrics were computed, nantbly coefficient of dtermination(R?, the Root Mean Square
Error (RMSE) and the Akaike Information Criterion (Ald)he best models are the ones with a high
value of Rz and a low value of RMSE and AIC.

All analyses were doneising theR software version 3.4.4

The kestmodels selected were used to create illustra@P® and NEEnags of the study arefor two
dates. The choice of the dates only aimed at haviegn the greening phaaadanother one in the dry
phaselmage algebra was performed a vegetation index laybased on the expressiofieach model
When required in the expression of the model, PAR was used with the proper aggrégatinicday
or daily aggregatel0 or 5days average, depending on which aggregate of flux is lestigated and
which source of vegetation index is being considered (SP&jetation or Landsat 8yhe maps were
createdusing the ArcGIS 10.4.1 softwarEhe resulting GPP andEE repregntaveragdluxesof 5 or
10 days if estimated frotrandsat derived VIs or NDVIs respectively.

4. Results

4.1. Carbon fluxes andenvironmental variables

The Figure 3 below presentfor the period 2012017, fluxes (NEE, GPP, B) and some main
environmental variabldacludingvapor pressure deficit (VPD), air temperature (Tair), global radiation
(Rg) and pecipitation (P). Large gaps are noticedbieflux data and VPD, whereas Tair and $tgpw

no gaps because they weapfilled from another meteorological station.

GPP shurs some seasonality and has two peaks during the growing season, a high peak around end of
May or beginning of June and a low peak in October. In between the two peaks, there is a period of low
carbon uptake translating into low GPP values in July and gtugumilar trends were visible in NEE

and Reco. Ifact, a strong correlatiowasobserved between NEE and GPP, both for midday and daily

averagegFigure 5).

The maximum values of VPD and Tair match the low GPP pe@tmbal radiation however reaches it

yearly peak earlier than VPD and Taomewhere between May and June.
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Precipitation data shows no real pattern of seasonality, as the distribution over the year seems quite
random.However, there is generallgssprecipitationin July and Augusthanin any other mont) in

some years.

Figure 3: Thirty minutesaverages of carboifukes VPD, Tair, Rg and totatlaily precipitation
recordel betweer2014and2017in thekarst grassland.
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